Foundation models in bioinformatics

基础(证据) 生物 计算生物学 生物信息学 考古 地理
作者
Fei Guo,Renchu Guan,Yaohang Li,Qi Liu,Xiaowo Wang,Can Yang,Jianxin Wang
出处
期刊:National Science Review [Oxford University Press]
标识
DOI:10.1093/nsr/nwaf028
摘要

Abstract With the adoption of Foundation Models (FMs), Artificial Intelligence (AI) has become increasingly significant in bioinformatics and has successfully addressed many historical challenges, such as pre-training frameworks, model evaluation, and interpretability. FMs demonstrate notable proficiency in managing large-scale, unlabeled datasets, because experimental procedures are costly and labor-intensive. In various downstream tasks, FMs have consistently achieved noteworthy results, demonstrating high levels of accuracy in representing biological entities. A new era in computational biology has been ushered in by the application of FMs, focusing on both general and specific biological issues. In this review, we introduce recent advancements in bioinformatics FMs that employed in a variety of downstream tasks, including genomics, transcriptomics, proteomics, drug discovery, and single cell analysis. Our aim is to assist scientists in selecting appropriate FMs in bioinformatics, according to four model types: language FMs, vision FMs, graph FMs, and multimodal FMs. In addition to understanding molecular landscapes, AI technology can establish the theoretical and practical foundation for continued innovation in molecular biology.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助008采纳,获得10
刚刚
Jim发布了新的文献求助10
1秒前
天天向上发布了新的文献求助10
1秒前
aa发布了新的文献求助10
3秒前
谦让面包发布了新的文献求助10
4秒前
ding应助小宋采纳,获得30
5秒前
7秒前
lxy发布了新的文献求助10
11秒前
13秒前
15秒前
aa完成签到,获得积分10
17秒前
18秒前
dd完成签到,获得积分10
19秒前
搜集达人应助迷米采纳,获得10
27秒前
28秒前
键盘车神完成签到 ,获得积分10
31秒前
天天向上发布了新的文献求助10
32秒前
乐乐应助小薛同学采纳,获得10
32秒前
紧张的刺猬完成签到,获得积分10
37秒前
小琰争取读博完成签到,获得积分10
37秒前
搜集达人应助小哈采纳,获得10
40秒前
北风完成签到,获得积分10
43秒前
预言烨应助初色采纳,获得10
44秒前
香蕉觅云应助ppp采纳,获得10
45秒前
天天快乐应助闪闪的发夹采纳,获得10
45秒前
52秒前
52秒前
53秒前
Eden完成签到,获得积分20
55秒前
56秒前
交流关注了科研通微信公众号
56秒前
ppp发布了新的文献求助10
57秒前
渔舟唱晚应助科研通管家采纳,获得10
58秒前
58秒前
快乐寄风完成签到 ,获得积分10
58秒前
58秒前
执着的天使完成签到 ,获得积分10
1分钟前
小哈发布了新的文献求助10
1分钟前
无情的琳发布了新的文献求助10
1分钟前
大个应助wy.he采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375633
求助须知:如何正确求助?哪些是违规求助? 2992053
关于积分的说明 8748759
捐赠科研通 2676260
什么是DOI,文献DOI怎么找? 1466033
科研通“疑难数据库(出版商)”最低求助积分说明 678070
邀请新用户注册赠送积分活动 669750