The proportion of low abundance species is a key predictor of plant β‐diversity across the latitudinal gradient

丰度(生态学) 生态学 钥匙(锁) 多样性(政治) 物种多样性 植物多样性 生物 地理 植物种类 社会学 人类学
作者
Jing Xiao,Yuantao Feng,Huixin Zhang,Chenchao Xu,Kaihang Zhang,Marc W. Cadotte,Lei Cheng
出处
期刊:Journal of Ecology [Wiley]
标识
DOI:10.1111/1365-2745.14487
摘要

Abstract The diversity of life displays very strong patterns of disparity across the Earth. Beta (β)‐diversity (species compositional differences among sites) of woody plants, for instance, has usually been documented to decline with increasing latitude. Understanding these patterns, however, remains a grand challenge in ecology and evolution. We develop a mathematical model to explain patterns of β‐diversity across multiple landscapes. The model effectively predicts β‐diversity in simulated and natural communities, regardless of the types of species abundance distributions. Our model provides the novel insight that the proportion of species in the lowest abundance category ( P L ), which represents the share of relatively rare species in the regional species pool, is the key predictor of plant β‐diversity. By applying the model to global forest inventories sampled from 40.7° S to 60.7° N, we find that P L explains nearly 85% of the variation in plant β‐diversity along the global latitudinal gradient. Through a series of numerical simulations, we further show that the predictive power of P L on plant β‐diversity on a global scale is largely determined by the variation of intraspecific aggregation among different communities. Synthesis : We develop a new sampling model to predict patterns of β‐diversity and find that the P L explains the majority of the variation in plant β‐diversity along the latitudinal gradient. Our work provides a new tool in analysing β‐diversity and advances the theoretical understanding of large‐scale β‐diversity patterns across environmental gradients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微冷完成签到,获得积分10
刚刚
1秒前
陈印完成签到,获得积分20
1秒前
1秒前
科研通AI5应助雨碎寒江采纳,获得150
2秒前
2秒前
等待的谷波完成签到 ,获得积分10
3秒前
强扭的瓜完成签到 ,获得积分10
3秒前
4秒前
NiceSunnyDay发布了新的文献求助10
4秒前
科研小李完成签到 ,获得积分10
5秒前
辛勤的鱼发布了新的文献求助10
5秒前
5秒前
勤恳的烤鸡完成签到,获得积分10
5秒前
5秒前
科研通AI5应助vvvv采纳,获得10
6秒前
脑洞疼应助Heisenberg采纳,获得10
6秒前
微冷发布了新的文献求助10
6秒前
7秒前
材料小白发布了新的文献求助10
8秒前
orixero应助阳哥采纳,获得10
8秒前
隐形曼青应助川川子采纳,获得10
8秒前
8秒前
8秒前
科研狂人发布了新的文献求助10
8秒前
zhao完成签到,获得积分10
9秒前
9秒前
Jenojam完成签到,获得积分20
10秒前
Jasper应助陈印采纳,获得10
10秒前
瘦瘦小萱发布了新的文献求助20
10秒前
10秒前
10秒前
zhao发布了新的文献求助200
12秒前
小蘑菇应助专注小熊猫采纳,获得10
12秒前
13秒前
13秒前
pqy发布了新的文献求助10
14秒前
16秒前
孙宇发布了新的文献求助10
16秒前
bkagyin应助瘦瘦小萱采纳,获得10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490539
求助须知:如何正确求助?哪些是违规求助? 3077414
关于积分的说明 9148826
捐赠科研通 2769667
什么是DOI,文献DOI怎么找? 1519863
邀请新用户注册赠送积分活动 704336
科研通“疑难数据库(出版商)”最低求助积分说明 702135