Bispecific Metabolic Monitoring Platform for Bacterial Identification and Antibiotic Susceptibility Testing

抗生素 鉴定(生物学) 微生物学 计算生物学 医学 生物 植物
作者
Jiayi Chen,Ziyun Miao,Chengjie Ma,Bing Qi,Lingling Qiu,Jiahui Tan,Yurong Wei,J F Wang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c03534
摘要

Prompt and reliable bacterial identification and antibiotic susceptibility testing are vital for combating bacterial infections and drug resistance. Herein, we designed a bispecific metabolic monitoring platform that targets enzyme-catalyzed biochemical reactions for bacterial identification and antibiotic susceptibility testing. Specifically, we designed two kinds of coreshell-structured persistent luminescence nanoparticles with surface-confined red and green persistent luminescence, respectively. The persistent luminescence nanoparticles were functionalized with energy acceptors that can be specifically cleaved by bacterial enzymes. The surface-confined persistent luminescence amplified the Förster resonance energy transfer (FRET) efficacy from the nanoparticles to the surface energy acceptors, even though the diameter of the nanoparticles exceeded the critical size of FRET, which improved the sensitivity of bacterial enzyme monitoring. Due to the differentiated expression and secretion of enzymes, different species of bacteria produced discrepant red and green persistent luminescence after incubation with the persistent luminescence nanoprobes. Machine learning models were trained by the characteristic persistent luminescence patterns of bacteria for unknown bacterial identification. Prompt bacteria identification was realized, and the overall accuracy reached 100%. Moreover, the machine learning model could identify the active and inactive states of bacteria treated with antibiotics, which provided a prompt and convenient method to determine whether the bacteria were susceptible to the antibiotics. This study provides a robust method to monitor bacterial metabolism and offers a promising strategy for infection treatment, bacterial communication monitoring, and pathogenicity investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenbinvan完成签到,获得积分0
2秒前
可爱非笑发布了新的文献求助10
3秒前
善良寒风完成签到,获得积分10
5秒前
9秒前
lemon完成签到,获得积分10
11秒前
NexusExplorer应助holps采纳,获得10
11秒前
哈哈完成签到,获得积分10
11秒前
宋佳顺完成签到,获得积分10
13秒前
redondo10完成签到,获得积分0
15秒前
北海完成签到 ,获得积分10
15秒前
16秒前
大鱼完成签到,获得积分10
17秒前
小丸子发布了新的文献求助10
17秒前
随意完成签到,获得积分10
18秒前
Axiones发布了新的文献求助10
19秒前
19秒前
古古怪界丶黑大帅完成签到,获得积分10
20秒前
lingchuan关注了科研通微信公众号
20秒前
一裤子灰发布了新的文献求助10
20秒前
redondo5完成签到,获得积分0
22秒前
bkagyin应助袁小竹采纳,获得10
22秒前
23秒前
HHHH完成签到,获得积分10
24秒前
yyyyxxxxx发布了新的文献求助10
24秒前
1335804518完成签到 ,获得积分10
25秒前
27秒前
cjh完成签到,获得积分10
29秒前
ccc完成签到 ,获得积分10
29秒前
涂涂完成签到,获得积分10
31秒前
redondo完成签到,获得积分10
31秒前
调研昵称发布了新的文献求助10
31秒前
自然怀梦完成签到,获得积分10
32秒前
纯银Whisky完成签到,获得积分10
33秒前
山河完成签到 ,获得积分20
33秒前
研友_LJQ4o8完成签到,获得积分10
33秒前
喝酸奶不舔盖完成签到 ,获得积分10
34秒前
小燕完成签到 ,获得积分10
34秒前
tt发布了新的文献求助10
35秒前
LLL发布了新的文献求助20
35秒前
笑点低煎饼完成签到,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233