Accurate measurement techniques and prediction approaches for the in-situ rock stress

人工神经网络 随机性 压力(语言学) 计算机科学 近似误差 原位 样品(材料) 数据挖掘 生物系统 人工智能 统计 算法 数学 化学 有机化学 语言学 哲学 色谱法 生物
作者
Peng Li,Meifeng Cai,Shengjun Miao,Yuan Li,Sun Liang,Jiangtao Wang,Mostafa Gorjian
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-64030-7
摘要

Abstract The precise calculation and evaluation of the in-situ rock stress tensor is a crucial factor in addressing the major challenges related to subsurface engineering applications and earth science research. To improve the accuracy of in-situ stress measurement and prediction, an improved overcoring technique involving a measurement circuit, temperature compensation, and calculation method is presented for accurately measuring the in-situ rock stress tensor. Furthermore, an embedded grey BP neural network (GM–BPNN) model is established for predicting in-situ rock stress values. The results indicate that the improved overcoring technique has significantly improved the stress measurement accuracy, and a large number of valuable stress data obtained from many mines have proved the testing performance of this technique. Moreover, the mean relative errors of the prediction results of GM(0, 1) for the three principal stresses all reach 6–30%, and the accuracy of the model fails to meet the requirements. The average relative errors of the prediction results of the BPNN model are all less than 10%, and the model accuracy meets the requirements and has sufficient credibility. Compared with the GM and BPNN models, the embedded GM–BPNN model produces the best results, with mean relative errors of 0.0001–4.8338%. The embedded GM–BPNN model fully utilizes the characteristics of grey theory and BP neural network, which require a small sample size, weaken the randomness of the original data, and gradually approach the accuracy of the model, making it particularly suitable for situations with limited stress data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Eton完成签到,获得积分10
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
徐徐徐应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
huangJP发布了新的文献求助10
3秒前
3秒前
stuffmatter应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
WHT完成签到,获得积分10
3秒前
Clover04应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得30
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
1sunpf完成签到,获得积分10
5秒前
spf完成签到,获得积分10
5秒前
Raul完成签到 ,获得积分10
5秒前
dery发布了新的文献求助10
5秒前
sci完成签到,获得积分10
7秒前
帝蒼完成签到,获得积分10
8秒前
itsserene应助蔚111采纳,获得20
11秒前
sheila完成签到 ,获得积分10
12秒前
alpaca5完成签到,获得积分10
13秒前
F+L完成签到 ,获得积分10
15秒前
15秒前
huangJP完成签到,获得积分20
15秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790680
关于积分的说明 7796114
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176