亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unraveling the Influence of Shell Thickness in Organic Functionalized Cu2O Nanoparticles on C2+ Products Distribution in Electrocatalytic CO2 Reduction

材料科学 纳米颗粒 壳体(结构) 分布(数学) 电催化剂 还原(数学) 纳米技术 化学工程 物理化学 复合材料 电化学 电极 数学分析 化学 几何学 数学 工程类
作者
Jiajun Hu,Silvio Osella,Josep Albero,Hermenegildo Garcı́a
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (44) 被引量:8
标识
DOI:10.1002/adfm.202404566
摘要

Abstract Cu‐based electrocatalysts exhibit enormous potential for electrochemical CO 2 conversion to added‐value products. However, high selectivity, specially toward C 2+ products, remains a critical challenge for its implementation in commercial applications. Herein, the study reports the preparation of a series of electrocatalysts based on octadecyl amine (ODA) coated Cu 2 O nanoparticles (NPs). HRTEM images show ODA coatings with thickness from 1.2 to 4 nm. DFT calculations predict that at low surface coverage, ODA tends to lay on the Cu 2 O surface, leaving hydrophilic regions. Oppositely, at high surface coverage, the ODA molecules are densely packed, being detrimental for both mass and charge transfer. These changes in ODA molecular arrangement explain differences in product selectivity. In situ Raman spectroscopy has revealed that the optimum ODA thickness contributes to the stabilization of key intermediates in the formation of C 2+ products, especially ethanol. Electrochemical impedance spectroscopy and pulse voltammetry measurements confirm that the thicker ODA shells increase charge transfer resistance, while the lowest ODA content promotes faster intermediate desorption rates. At the optimum thickness, the intermediates desorption rates are the slowest, in agreement with the maximum concentration of intermediates observed by in situ Raman spectroscopy, thereby resulting in a Faradaic efficiency to ethanol and ethylene over 73%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34举报霍霍求助涉嫌违规
10秒前
隐形曼青应助juan采纳,获得10
14秒前
26秒前
33秒前
33秒前
38秒前
多乐多发布了新的文献求助10
40秒前
OSASACB完成签到 ,获得积分10
41秒前
42秒前
英姑应助多乐多采纳,获得10
51秒前
53秒前
1分钟前
1分钟前
SUNny发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
juan发布了新的文献求助10
2分钟前
juan完成签到,获得积分10
2分钟前
美满的小蘑菇完成签到 ,获得积分10
2分钟前
可爱的函函应助Huck采纳,获得10
2分钟前
2分钟前
2分钟前
Huck发布了新的文献求助10
2分钟前
斯文渊思发布了新的文献求助10
2分钟前
2分钟前
遥感小虫发布了新的文献求助10
2分钟前
斯文渊思完成签到,获得积分10
3分钟前
遥感小虫发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
NattyPoe应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491