已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Continual Action Assessment via Task-Consistent Score-Discriminative Feature Distribution Modeling

判别式 计算机科学 特征(语言学) 人工智能 任务(项目管理) 模式识别(心理学) 动作(物理) 分布(数学) 机器学习 数学 工程类 物理 数学分析 哲学 系统工程 量子力学 语言学
作者
Yuan-Ming Li,Ling-An Zeng,Jingke Meng,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 9112-9124 被引量:4
标识
DOI:10.1109/tcsvt.2024.3396692
摘要

Action Quality Assessment (AQA) is a task that tries to answer how well an action is carried out. While remarkable progress has been achieved, existing works on AQA assume that all the training data are visible for training at one time, but do not enable continual learning on assessing new technical actions. In this work, we address such a Continual Learning problem in AQA (Continual-AQA), which urges a unified model to learn AQA tasks sequentially without forgetting. Our idea for modeling Continual-AQA is to sequentially learn a task-consistent score-discriminative feature distribution, in which the latent features express a strong correlation with the score labels regardless of the task or action types. From this perspective, we aim to mitigate the forgetting in Continual-AQA from two aspects. Firstly, to fuse the features of new and previous data into a score-discriminative distribution, a novel Feature-Score Correlation-Aware Rehearsal is proposed to store and reuse data from previous tasks with limited memory size. Secondly, an Action General-Specific Graph is developed to learn and decouple the action-general and action-specific knowledge so that the task-consistent score-discriminative features can be better extracted across various tasks. Extensive experiments are conducted to evaluate the contributions of proposed components. The comparisons with the existing continual learning methods additionally verify the effectiveness and versatility of our approach. Data and code are available at https://github.com/iSEE-Laboratory/Continual-AQA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敌敌畏应助执着的海采纳,获得10
刚刚
无花果应助原来采纳,获得10
刚刚
小胖子完成签到 ,获得积分10
2秒前
Lucky完成签到 ,获得积分10
9秒前
Linux2000Pro完成签到,获得积分0
11秒前
燕燕完成签到 ,获得积分10
16秒前
17秒前
Owen应助TTTHANKS采纳,获得10
21秒前
鬼笔环肽完成签到 ,获得积分10
25秒前
爱笑的小羽毛完成签到,获得积分10
28秒前
852应助嘭嘭嘭采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
29秒前
一八四发布了新的文献求助10
31秒前
31秒前
31秒前
34秒前
35秒前
35秒前
执着之玉发布了新的文献求助10
36秒前
Alpha完成签到 ,获得积分10
36秒前
阴森女公爵完成签到 ,获得积分10
37秒前
浮云朝露关注了科研通微信公众号
37秒前
传奇3应助zhanghao采纳,获得10
37秒前
TTTHANKS发布了新的文献求助10
38秒前
jiangchuansm完成签到,获得积分10
39秒前
absb发布了新的文献求助10
40秒前
41秒前
嘻嘻嘻完成签到,获得积分10
44秒前
mimimi发布了新的文献求助10
45秒前
一八四完成签到,获得积分10
50秒前
mimimi完成签到,获得积分10
51秒前
充电宝应助absb采纳,获得10
51秒前
Orange应助absb采纳,获得50
51秒前
丘比特应助absb采纳,获得10
51秒前
可爱的函函应助absb采纳,获得10
51秒前
CodeCraft应助absb采纳,获得10
51秒前
我是老大应助suchui采纳,获得10
52秒前
浮云朝露发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704