已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Continual Action Assessment via Task-Consistent Score-Discriminative Feature Distribution Modeling

判别式 计算机科学 特征(语言学) 人工智能 任务(项目管理) 模式识别(心理学) 动作(物理) 分布(数学) 机器学习 数学 工程类 数学分析 哲学 语言学 物理 系统工程 量子力学
作者
Yuan-Ming Li,Ling-An Zeng,Jingke Meng,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 9112-9124 被引量:4
标识
DOI:10.1109/tcsvt.2024.3396692
摘要

Action Quality Assessment (AQA) is a task that tries to answer how well an action is carried out. While remarkable progress has been achieved, existing works on AQA assume that all the training data are visible for training at one time, but do not enable continual learning on assessing new technical actions. In this work, we address such a Continual Learning problem in AQA (Continual-AQA), which urges a unified model to learn AQA tasks sequentially without forgetting. Our idea for modeling Continual-AQA is to sequentially learn a task-consistent score-discriminative feature distribution, in which the latent features express a strong correlation with the score labels regardless of the task or action types. From this perspective, we aim to mitigate the forgetting in Continual-AQA from two aspects. Firstly, to fuse the features of new and previous data into a score-discriminative distribution, a novel Feature-Score Correlation-Aware Rehearsal is proposed to store and reuse data from previous tasks with limited memory size. Secondly, an Action General-Specific Graph is developed to learn and decouple the action-general and action-specific knowledge so that the task-consistent score-discriminative features can be better extracted across various tasks. Extensive experiments are conducted to evaluate the contributions of proposed components. The comparisons with the existing continual learning methods additionally verify the effectiveness and versatility of our approach. Data and code are available at https://github.com/iSEE-Laboratory/Continual-AQA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尧尧完成签到,获得积分10
1秒前
Solomon完成签到 ,获得积分0
2秒前
3秒前
古风完成签到 ,获得积分10
3秒前
ccc完成签到,获得积分10
3秒前
4秒前
Zzz_Carlos完成签到 ,获得积分10
5秒前
CRane发布了新的文献求助10
6秒前
7秒前
酷波er应助zsl0207采纳,获得10
10秒前
传奇3应助科研小白采纳,获得10
10秒前
火星上的摩托完成签到 ,获得积分10
11秒前
13秒前
Candy2024完成签到 ,获得积分10
16秒前
18秒前
桐桐应助呼哈哈采纳,获得10
20秒前
CRane发布了新的文献求助10
21秒前
freeok发布了新的文献求助10
24秒前
25秒前
xumengsuo发布了新的文献求助10
30秒前
31秒前
思洋完成签到,获得积分10
33秒前
刘佳会发布了新的文献求助10
34秒前
35秒前
汉堡包应助xumengsuo采纳,获得10
35秒前
35秒前
可乐不加冰完成签到 ,获得积分10
35秒前
36秒前
忧郁凡灵发布了新的文献求助10
39秒前
40秒前
44秒前
Hh发布了新的文献求助10
46秒前
CipherSage应助忧郁凡灵采纳,获得10
48秒前
53秒前
GoldenRain发布了新的文献求助10
54秒前
55秒前
57秒前
忧郁凡灵完成签到,获得积分10
57秒前
58秒前
李爱国应助mmmm采纳,获得10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265359
求助须知:如何正确求助?哪些是违规求助? 2905399
关于积分的说明 8333544
捐赠科研通 2575647
什么是DOI,文献DOI怎么找? 1400044
科研通“疑难数据库(出版商)”最低求助积分说明 654640
邀请新用户注册赠送积分活动 633500