MFMENet: multi-scale features mutual enhancement network for change detection in remote sensing images

变更检测 遥感 比例(比率) 计算机科学 环境科学 人工智能 模式识别(心理学) 地质学 地图学 地理
作者
S. Li,Yonghong Song,Xiaomeng Wu,You Su,Yuanlin Zhang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (10): 3248-3273 被引量:1
标识
DOI:10.1080/01431161.2024.2343139
摘要

Change detection, an important task in remote sensing image analysis, has been extensively studied in recent years. However, change detection still faces problems such as difficulty in detecting small targets and incomplete edge detection. Furthermore, pseudo changes such as seasonal changes can also lead to many false detections. In response to these challenges, we propose the Multi-scale Features Mutual Enhancement Network (MFMENet), a simple yet efficient network. MFMENet maximizes feature utilization through mutual guidance and supplementation, enhancing the detection capabilities for small targets and edges. First, we use a lightweight feature extraction network to extract features, which mitigates the information loss caused by continuous downsampling of an overly deep network structure. Then, we design a Context Adaptive Interaction Module (CAIM) to realize the complementarity of feature information at different levels. This facilitates shallow features in gaining more semantic information and deep features in acquiring more texture information, thereby enhancing the model's capability to capture more comprehensive edge features while effectively mitigating interference from pseudo changes. Finally, we introduce a Feature Aggregation Comparison Module (FACM), which uses a combination of aggregation and comparison methods to refine and enhance features. FACM can not only highlight the changed features but also retain more details, improving the model's detection ability of small targets and edge details. The full utilization of features and effective mutual enhancement of information ensure the improvement of MFMENet's performance in small target and edge detection. Extensive experiments on three publicly available datasets (LEVIR, DSIFN, and CDD) demonstrate that our approach achieves superior performance with fewer parameters compared to state-of-the-art methods in recent years. In comparison to these baseline methods, our proposed approach achieves improvements of 0.98%, 12.24%, and 2.03% in the IOU metric on the LEVIR, DSIFN, and CDD datasets, respectively, while utilizing only 1.1 M parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyb完成签到,获得积分10
刚刚
852应助songnvshi采纳,获得10
刚刚
箱子发布了新的文献求助10
1秒前
Zll发布了新的文献求助10
1秒前
1秒前
qq完成签到,获得积分10
2秒前
怕黑剑封发布了新的文献求助10
2秒前
3秒前
脑洞疼应助熠耀采纳,获得10
4秒前
不安青牛应助木非林采纳,获得10
5秒前
小蘑菇应助cy采纳,获得10
5秒前
5秒前
5秒前
6秒前
月亮明星完成签到,获得积分10
6秒前
今后应助我的天啊采纳,获得10
6秒前
渣渣完成签到,获得积分10
6秒前
顾矜应助sinafre采纳,获得10
7秒前
Demi发布了新的文献求助10
7秒前
852应助yukikaze采纳,获得10
8秒前
无奈的萍完成签到,获得积分10
8秒前
7326关注了科研通微信公众号
8秒前
8秒前
vvdd发布了新的文献求助10
8秒前
8秒前
我是老大应助科研通管家采纳,获得30
9秒前
SciGPT应助科研通管家采纳,获得30
9秒前
pluto应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得30
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
Herman_Chen应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Augenstern发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468882
求助须知:如何正确求助?哪些是违规求助? 3061910
关于积分的说明 9077482
捐赠科研通 2752380
什么是DOI,文献DOI怎么找? 1510402
科研通“疑难数据库(出版商)”最低求助积分说明 697789
邀请新用户注册赠送积分活动 697759