MFMENet: multi-scale features mutual enhancement network for change detection in remote sensing images

变更检测 遥感 比例(比率) 计算机科学 环境科学 人工智能 模式识别(心理学) 地质学 地图学 地理
作者
S. Li,Yonghong Song,Xiaomeng Wu,You Su,Yuanlin Zhang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (10): 3248-3273 被引量:1
标识
DOI:10.1080/01431161.2024.2343139
摘要

Change detection, an important task in remote sensing image analysis, has been extensively studied in recent years. However, change detection still faces problems such as difficulty in detecting small targets and incomplete edge detection. Furthermore, pseudo changes such as seasonal changes can also lead to many false detections. In response to these challenges, we propose the Multi-scale Features Mutual Enhancement Network (MFMENet), a simple yet efficient network. MFMENet maximizes feature utilization through mutual guidance and supplementation, enhancing the detection capabilities for small targets and edges. First, we use a lightweight feature extraction network to extract features, which mitigates the information loss caused by continuous downsampling of an overly deep network structure. Then, we design a Context Adaptive Interaction Module (CAIM) to realize the complementarity of feature information at different levels. This facilitates shallow features in gaining more semantic information and deep features in acquiring more texture information, thereby enhancing the model's capability to capture more comprehensive edge features while effectively mitigating interference from pseudo changes. Finally, we introduce a Feature Aggregation Comparison Module (FACM), which uses a combination of aggregation and comparison methods to refine and enhance features. FACM can not only highlight the changed features but also retain more details, improving the model's detection ability of small targets and edge details. The full utilization of features and effective mutual enhancement of information ensure the improvement of MFMENet's performance in small target and edge detection. Extensive experiments on three publicly available datasets (LEVIR, DSIFN, and CDD) demonstrate that our approach achieves superior performance with fewer parameters compared to state-of-the-art methods in recent years. In comparison to these baseline methods, our proposed approach achieves improvements of 0.98%, 12.24%, and 2.03% in the IOU metric on the LEVIR, DSIFN, and CDD datasets, respectively, while utilizing only 1.1 M parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dream完成签到,获得积分10
1秒前
uf欧完成签到,获得积分10
1秒前
波菌完成签到,获得积分10
1秒前
2秒前
小乖完成签到,获得积分10
2秒前
大意的飞莲完成签到 ,获得积分10
2秒前
3秒前
3秒前
王京华发布了新的文献求助10
3秒前
平常亦凝关注了科研通微信公众号
3秒前
4秒前
zzsy完成签到,获得积分10
4秒前
领导范儿应助道天采纳,获得10
4秒前
稳重紫蓝完成签到 ,获得积分10
5秒前
科研通AI2S应助于特采纳,获得10
5秒前
zmz应助郑大钱采纳,获得10
6秒前
6秒前
6秒前
lizi完成签到,获得积分10
6秒前
6秒前
7秒前
春雨发布了新的文献求助10
7秒前
朵朵发布了新的文献求助10
7秒前
7秒前
顾矜应助张垚采纳,获得10
8秒前
冷傲松鼠完成签到 ,获得积分10
8秒前
邵初蓝完成签到,获得积分10
9秒前
10秒前
燕燕完成签到 ,获得积分10
10秒前
傻傻的修洁完成签到,获得积分10
10秒前
10秒前
uf欧发布了新的文献求助10
10秒前
称心的灵枫完成签到 ,获得积分20
10秒前
10秒前
11秒前
zik应助yy采纳,获得10
11秒前
11秒前
小蘑菇应助yiyi采纳,获得10
11秒前
炸鸡加热发布了新的文献求助10
11秒前
啊啊啊啊发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034