MFMENet: multi-scale features mutual enhancement network for change detection in remote sensing images

变更检测 遥感 比例(比率) 计算机科学 环境科学 人工智能 模式识别(心理学) 地质学 地图学 地理
作者
S. Li,Yonghong Song,Xiaomeng Wu,You Su,Yuanlin Zhang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (10): 3248-3273 被引量:1
标识
DOI:10.1080/01431161.2024.2343139
摘要

Change detection, an important task in remote sensing image analysis, has been extensively studied in recent years. However, change detection still faces problems such as difficulty in detecting small targets and incomplete edge detection. Furthermore, pseudo changes such as seasonal changes can also lead to many false detections. In response to these challenges, we propose the Multi-scale Features Mutual Enhancement Network (MFMENet), a simple yet efficient network. MFMENet maximizes feature utilization through mutual guidance and supplementation, enhancing the detection capabilities for small targets and edges. First, we use a lightweight feature extraction network to extract features, which mitigates the information loss caused by continuous downsampling of an overly deep network structure. Then, we design a Context Adaptive Interaction Module (CAIM) to realize the complementarity of feature information at different levels. This facilitates shallow features in gaining more semantic information and deep features in acquiring more texture information, thereby enhancing the model's capability to capture more comprehensive edge features while effectively mitigating interference from pseudo changes. Finally, we introduce a Feature Aggregation Comparison Module (FACM), which uses a combination of aggregation and comparison methods to refine and enhance features. FACM can not only highlight the changed features but also retain more details, improving the model's detection ability of small targets and edge details. The full utilization of features and effective mutual enhancement of information ensure the improvement of MFMENet's performance in small target and edge detection. Extensive experiments on three publicly available datasets (LEVIR, DSIFN, and CDD) demonstrate that our approach achieves superior performance with fewer parameters compared to state-of-the-art methods in recent years. In comparison to these baseline methods, our proposed approach achieves improvements of 0.98%, 12.24%, and 2.03% in the IOU metric on the LEVIR, DSIFN, and CDD datasets, respectively, while utilizing only 1.1 M parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
英俊的铭应助Amanda采纳,获得10
1秒前
中和皇极应助11111采纳,获得10
1秒前
大白完成签到 ,获得积分10
2秒前
2秒前
等风吹完成签到,获得积分20
3秒前
3秒前
4秒前
kkt完成签到,获得积分10
4秒前
一见憘完成签到 ,获得积分10
5秒前
5秒前
大白关注了科研通微信公众号
5秒前
陈隆发布了新的文献求助10
7秒前
小马甲应助rudjs采纳,获得10
9秒前
祎橘发布了新的文献求助10
9秒前
jyy发布了新的文献求助200
9秒前
9秒前
顾矜应助GGbound采纳,获得10
10秒前
万能图书馆应助尊敬寒松采纳,获得10
11秒前
11秒前
zdd发布了新的文献求助10
11秒前
陈隆完成签到,获得积分10
13秒前
18秒前
21秒前
orixero应助wyj采纳,获得10
21秒前
泶1完成签到,获得积分10
22秒前
111完成签到,获得积分10
22秒前
22秒前
22秒前
尊敬寒松发布了新的文献求助10
23秒前
WenjingziWang完成签到,获得积分10
25秒前
27秒前
传奇3应助ddddd采纳,获得10
28秒前
石一发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662