听力图
听力学
听力计
测听
听力损失
分类
听力测试
心理学
三合会(社会学)
数字
助听器
医学
计算机科学
数学
算术
人工智能
精神分析
作者
Larry E. Humes,David A. Zapala
标识
DOI:10.1177/23312165241260041
摘要
Almost since the inception of the modern-day electroacoustic audiometer a century ago the results of pure-tone audiometry have been characterized by an audiogram. For almost as many years, clinicians and researchers have sought ways to distill the volume and complexity of information on the audiogram. Commonly used approaches have made use of pure-tone averages (PTAs) for various frequency ranges with the PTA for 500, 1000, 2000 and 4000 Hz (PTA4) being the most widely used for the categorization of hearing loss severity. Here, a three-digit triad is proposed as a single-number summary of not only the severity, but also the configuration and bilateral symmetry of the hearing loss. Each digit in the triad ranges from 0 to 9, increasing as the level of the pure-tone hearing threshold level (HTL) increases from a range of optimal hearing (< 10 dB Hearing Level; HL) to complete hearing loss (≥ 90 dB HL). Each digit also represents a different frequency region of the audiogram proceeding from left to right as: (Low, L) PTA for 500, 1000, and 2000 Hz; (Center, C) PTA for 3000, 4000 and 6000 Hz; and (High, H) HTL at 8000 Hz. This LCH Triad audiogram-classification system is evaluated using a large United States (U.S.) national dataset (N = 8,795) from adults 20 to 80 + years of age and two large clinical datasets totaling 8,254 adults covering a similar age range. Its ability to capture variations in hearing function was found to be superior to that of the widely used PTA4.
科研通智能强力驱动
Strongly Powered by AbleSci AI