钴
催化作用
酞菁
取代基
化学
光化学
无机化学
药物化学
有机化学
作者
Yinlong Li,Xue‐Lian Jiang,Hao Cao,Zhao Hong-yan,Jun Li,Yang‐Gang Wang
标识
DOI:10.1021/acscatal.3c05089
摘要
Cobalt phthalocyanine molecules combined with carbon materials (CoPc@NC) have been reported to exhibit prominent electrocatalytic performance toward the CO2 reduction reaction (CO2RR). However, the molecular-scale insights into the mechanisms regarding its high activity or Faraday efficiency remain limited due to the great challenge in modeling the electrochemical interface. Herein, an explicit computational model with the inclusion of solvation and electrode potential was employed to explore the mechanistic nature of the CO2RR at the graphene-supported CoPc electrochemical interface. It is suggested that the reaction mechanisms of the CO2RR on the molecular CoPc catalyst can be remarkably affected by solvation and electrode potential. The DFT-based constrained ab initio molecular dynamics simulations with the thermodynamic integration method support the notion that the frontier molecular orbitals of the molecular CoPc catalyst can be easily modulated by the electrode potentials and thus influence the redox performance during the CO2RR. The CO2 adsorption step involving partial charge transfer from the molecular catalyst is strongly potential-dependent. Once the CO2 is absorbed, subsequent protonation, as the rate-determining step, is not significantly affected by the electrode potential. Moreover, the overall catalytic activity of the CO2RR can be remarkably enhanced by introducing an electron-donating substituent such as a cyano group (−CN), which is attributed to the charge redistribution between the carbon substrate and the molecular CoPc catalyst. Our work not only provides deep insights into the electronic structure of the CoPc@NC system but also illustrates the critical role of the carbon substrate and substituents on the CoPc catalyst, paving a promising way for advancing efficient CO2 transformation.
科研通智能强力驱动
Strongly Powered by AbleSci AI