High-performance fentanyl molecularly imprinted electrochemical sensing platform designed through molecular simulations

化学 芬太尼 分子印迹 电化学气体传感器 分子印迹聚合物 跟踪(心理语言学) 电化学 纳米技术 药理学 催化作用 有机化学 选择性 物理化学 医学 材料科学 电极 语言学 哲学
作者
Meng Li,Haiou Chen,Anyun Xu,Shimeng Duan,Qingju Liu,Ruilin Zhang,Li-Lian Wang,Huiping Bai
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1312: 342686-342686
标识
DOI:10.1016/j.aca.2024.342686
摘要

Fentanyl and its derivatives are a type of potent opioid analgesics, with the characteristics of diverse structure, high toxicity, extremely low content, and high fatality rate. Currently, they have become one of the most serious problems in international drug abuse control due to their extensive use in drug production and use. Therefore, the development of a rapid, sensitive, and accurate method for detecting trace fentanyl is of great significance. In this study, in view of its complex structure and trace concentration, a new molecular imprinting electrochemical sensor was developed through molecular simulations followed by experimental validation to detect trace fentanyl. The process consisted of first obtaining the optimal functional monomer and its molar ratio through molecular simulations. The recognition sites of fentanyl-imprinted polymers were predicted to guide the synthesis of imprinted membranes with precision approach to ensure an efficient and accurate reaction process. Reduced graphene oxide (ErGO) was then deposited on glassy carbon electrode surface by electrochemical reduction to yield large numbers of active sites suitable for catalyzing reactions of fentanyl piperidine for promoted efficient electron transfer and amplified sensitivity of the sensor. Accordingly, fentanyl molecularly imprinted film was formed through one-step electropolymerization to yield greatly improved sensing selectivity due to the specific recognition of molecularly imprinted polymer. Under optimal experimental conditions, the fentanyl sensor showed an extended detection range of 3.84×10-9 mol L-1 ∼ 1.72×10-6 mol L-1 and a detection limit of 1.28×10-9 mol L-1. A distinctive feature of this sensor is its molecularly imprinted polymerized membrane, which offers excellent specific recognition, thereby boosting the sensor's selectivity. Throughout the sensor's development process, molecular simulations were employed to steer the synthesis of molecularly imprinted polymers and predict the recognition sites of fentanyl-imprinted polymers. The experimental outcomes proved to align with the simulation data. The final sensor exhibited outstanding selectivity, repeatability, stability, and high sensitivity. The sensor was effectively used to reliably track fentanyl in human serum samples, with acceptable analytical reliability, suggesting its potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助mmol采纳,获得10
1秒前
一二一发布了新的文献求助10
1秒前
ccc完成签到,获得积分10
1秒前
1秒前
1秒前
123完成签到,获得积分20
2秒前
2秒前
2秒前
Owen应助一个可爱的人采纳,获得50
3秒前
zpt发布了新的文献求助10
3秒前
chuan完成签到,获得积分10
4秒前
香蕉觅云应助郝事采纳,获得10
4秒前
LSD发布了新的文献求助10
6秒前
6秒前
肉卷完成签到 ,获得积分10
6秒前
Suagy发布了新的文献求助10
7秒前
柚子皮完成签到,获得积分10
8秒前
香蕉觅云应助LionontheMars采纳,获得10
8秒前
典雅雁梅发布了新的文献求助10
9秒前
9秒前
Hazel完成签到 ,获得积分10
10秒前
10秒前
科研通AI2S应助阿拉斯加采纳,获得200
11秒前
深情安青应助小董不懂采纳,获得10
11秒前
lch23560应助lXiao采纳,获得30
11秒前
乐乐应助anna采纳,获得10
12秒前
迷路的含桃完成签到 ,获得积分10
12秒前
13秒前
QuangVu完成签到,获得积分10
13秒前
lishuang5发布了新的文献求助10
14秒前
一二一完成签到,获得积分20
15秒前
15秒前
xiaomili完成签到,获得积分10
15秒前
彭于晏应助Guoqiang采纳,获得10
16秒前
大模型应助Guoqiang采纳,获得10
16秒前
魔幻哈密瓜应助Guoqiang采纳,获得30
16秒前
curtisness应助Guoqiang采纳,获得10
16秒前
curtisness应助Guoqiang采纳,获得10
16秒前
JTHe应助LSD采纳,获得20
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251