Stem cell transplantation is proven to be a promising strategy for intervertebral disc degeneration (IDD) repair. However, replicative senescence of bone marrow-derived mesenchymal stem cells (BMSCs), shear damage during direct injection, mechanical stress, and the reactive oxygen species (ROS)-rich microenvironment in degenerative intervertebral discs (IVDs) cause significant cellular damage and limit the therapeutic efficacy. Here, an injectable manganese oxide (MnOx)-functionalized thermosensitive nanohydrogel is proposed for BMSC transplantation for IDD therapy. The MnOx-functionalized thermosensitive nanohydrogel not only successfully protects BMSCs from shear force and mechanical stress before and after injection, but also repairs the harsh high-ROS environment in degenerative IVDs, thus effectively increasing the viability of BMSCs and resident nucleus pulposus cells (NPCs). The MnOx-functionalized thermosensitive nanohydrogel provides mechanical protection for stem cells and helps to remove endogenous ROS, providing a promising stem cell delivery platform for the treatment of IDD.