Exploring the early molecular pathogenesis of osteoarthritis using differential network analysis of human synovial fluid

滑液 发病机制 骨关节炎 鉴别诊断 医学 差速器(机械装置) 计算生物学 病理 生物信息学 生物 物理 替代医学 热力学
作者
Martin Rydén,Amanda Sjögren,Patrik Önnerfjord,Aleksandra Turkiewicz,J. Tjörnstrand,Martin Englund,Neserin Ali
出处
期刊:Molecular & Cellular Proteomics [Elsevier]
卷期号:23 (6): 100785-100785 被引量:1
标识
DOI:10.1016/j.mcpro.2024.100785
摘要

The molecular mechanisms that drive the onset and development of osteoarthritis (OA) remain largely unknown. In this exploratory study, we used a proteomic platform (SOMAscan assay) to measure the relative abundance of more than 6000 proteins in synovial fluid (SF) from knees of human donors with healthy or mildly degenerated tissues, and knees with late-stage OA from patients undergoing knee replacement surgery. Using a linear mixed effects model, we estimated the differential abundance of 6251 proteins between the three groups. We found 583 proteins upregulated in the late-stage OA, including MMP1, collagenase 3 and interleukin-6. Further, we selected 760 proteins (800 aptamers) based on absolute fold changes between the healthy and mild degeneration groups. To those, we applied Gaussian Graphical Models (GGMs) to analyze the conditional dependence of proteins and to identify key proteins and subnetworks involved in early OA pathogenesis. After regularization and stability selection, we identified 102 proteins involved in GGM networks. Notably, network complexity was lost in the protein graph for mild degeneration when compared to controls, suggesting a disruption in the regular protein interplay. Furthermore, among our main findings were several downregulated (in mild degeneration versus healthy) proteins with unique interactions in the healthy group, one of which, SLCO5A1, has not previously been associated with OA. Our results suggest that this protein is important for healthy joint function. Further, our data suggests that SF proteomics, combined with GGMs, can reveal novel insights into the molecular pathogenesis and identification of biomarker candidates for early-stage OA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一条热带鱼完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
小迷糊完成签到,获得积分10
2秒前
liduorou完成签到,获得积分10
2秒前
英姑应助Yxian采纳,获得10
3秒前
4秒前
活泼巧曼发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
快乐的云发布了新的文献求助10
7秒前
英姑应助Qps采纳,获得10
8秒前
11秒前
11秒前
flora发布了新的文献求助10
11秒前
魂梦与君同完成签到 ,获得积分10
12秒前
酷波er应助su采纳,获得10
12秒前
13秒前
聪明新筠完成签到,获得积分10
13秒前
活泼巧曼完成签到,获得积分10
13秒前
充电宝应助肚子饿了采纳,获得10
13秒前
14秒前
14秒前
七木完成签到,获得积分10
14秒前
15秒前
归尘发布了新的文献求助10
16秒前
16秒前
16秒前
小文_official完成签到 ,获得积分10
17秒前
thunder完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
氨气完成签到 ,获得积分10
18秒前
震动的曲奇完成签到,获得积分10
18秒前
19秒前
12345发布了新的文献求助10
19秒前
20秒前
上官若男应助333采纳,获得10
20秒前
21秒前
进击的软骨完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207