Exploring the early molecular pathogenesis of osteoarthritis using differential network analysis of human synovial fluid

滑液 发病机制 骨关节炎 鉴别诊断 医学 差速器(机械装置) 计算生物学 病理 生物信息学 生物 物理 热力学 替代医学
作者
Martin Rydén,Amanda Sjögren,Patrik Önnerfjord,Aleksandra Turkiewicz,J. Tjörnstrand,Martin Englund,Neserin Ali
出处
期刊:Molecular & Cellular Proteomics [Elsevier BV]
卷期号:23 (6): 100785-100785 被引量:1
标识
DOI:10.1016/j.mcpro.2024.100785
摘要

The molecular mechanisms that drive the onset and development of osteoarthritis (OA) remain largely unknown. In this exploratory study, we used a proteomic platform (SOMAscan assay) to measure the relative abundance of more than 6000 proteins in synovial fluid (SF) from knees of human donors with healthy or mildly degenerated tissues, and knees with late-stage OA from patients undergoing knee replacement surgery. Using a linear mixed effects model, we estimated the differential abundance of 6251 proteins between the three groups. We found 583 proteins upregulated in the late-stage OA, including MMP1, collagenase 3 and interleukin-6. Further, we selected 760 proteins (800 aptamers) based on absolute fold changes between the healthy and mild degeneration groups. To those, we applied Gaussian Graphical Models (GGMs) to analyze the conditional dependence of proteins and to identify key proteins and subnetworks involved in early OA pathogenesis. After regularization and stability selection, we identified 102 proteins involved in GGM networks. Notably, network complexity was lost in the protein graph for mild degeneration when compared to controls, suggesting a disruption in the regular protein interplay. Furthermore, among our main findings were several downregulated (in mild degeneration versus healthy) proteins with unique interactions in the healthy group, one of which, SLCO5A1, has not previously been associated with OA. Our results suggest that this protein is important for healthy joint function. Further, our data suggests that SF proteomics, combined with GGMs, can reveal novel insights into the molecular pathogenesis and identification of biomarker candidates for early-stage OA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jhope完成签到 ,获得积分10
1秒前
踏实书竹完成签到 ,获得积分10
1秒前
wxz完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
小小完成签到,获得积分10
3秒前
852应助Lindsay采纳,获得10
4秒前
那个人完成签到,获得积分10
5秒前
6秒前
不羁的风完成签到 ,获得积分10
7秒前
鳗鱼焦完成签到 ,获得积分10
7秒前
8秒前
打打应助科研通管家采纳,获得10
8秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
科研通AI5应助weixiaozheng采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得50
9秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
KK完成签到,获得积分20
11秒前
jimskylxk发布了新的文献求助10
11秒前
SN完成签到,获得积分10
11秒前
12秒前
3900完成签到 ,获得积分10
13秒前
KK发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
lijianguo应助兴奋的阿黄采纳,获得10
15秒前
老肖发布了新的文献求助10
15秒前
Ava应助bella采纳,获得10
16秒前
17秒前
贾不可完成签到,获得积分10
18秒前
科研通AI5应助周周采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
jimskylxk完成签到,获得积分10
20秒前
整齐醉波完成签到 ,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662463
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750686
捐赠科研通 2933115
什么是DOI,文献DOI怎么找? 1605919
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743