Quantum differential evolutionary algorithm with quantum-adaptive mutation strategy and population state evaluation framework for high-dimensional problems

差异进化 趋同(经济学) 数学优化 适应性突变 突变 人口 进化算法 计算机科学 算法 进化计算 数学 遗传算法 遗传学 生物 基因 人口学 社会学 经济 经济增长
作者
Wu Deng,Jiarui Wang,Aibin Guo,Huimin Zhao
出处
期刊:Information Sciences [Elsevier]
卷期号:676: 120787-120787 被引量:5
标识
DOI:10.1016/j.ins.2024.120787
摘要

Differential Evolution (DE) has been found to be inefficient and inaccurate in addressing high-dimensional complex problems. The Quantum-inspired Differential Evolution algorithm (QDE), endowed with quantum computing characteristics, efficiently manages high-dimensional problems but suffers from excessive mutation and poor convergence performance. Therefore, a new quantum differential evolutionary algorithm with quantum-adaptive mutation strategy and population state evaluation framework, namely PSEQADE is proposed. In PSEQADE, the quantum adaptive mutation strategy is employed to address the issue of excessive mutation in QDE, which adaptively reduces the degree of mutation, taking full advantage of the exceptional performance of quantum computing to enhance convergence accuracy. The quantum adaptive PSE framework is introduced to monitor the unstable mutation trends within the population, evaluate the population's state, and intervene accordingly, thereby significantly improving the convergence performance and stability of the quantum differential evolution algorithm. 20 well-known functions from CEC2017 were selected for comparison with EPSDE, SADE, SHADE, JADE, CODE algorithms in dimensions of 500, 1000 and 3000. Additionally, comparisons were conducted with MLSHADE-SPA, SHADE-ILS, CCPSO2, NFDDE, DBO, and RIME algorithms in the dimension of 3000. Experimental results demonstrate that PSEQADE exhibits excellent convergence performance, high convergence accuracy, and exceptional stability in solving high-dimensional complex problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助hang采纳,获得10
刚刚
1秒前
红黄蓝发布了新的文献求助10
2秒前
彭于晏应助姜折酒采纳,获得10
2秒前
打打应助GGGGD采纳,获得10
3秒前
3秒前
96121完成签到 ,获得积分10
3秒前
岸然完成签到,获得积分10
3秒前
5秒前
田様应助默默善愁采纳,获得10
5秒前
SciGPT应助阿尔法采纳,获得10
5秒前
李健应助有魅力的仙人掌采纳,获得10
6秒前
lyhwkyjy完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
钟梓袄发布了新的文献求助10
7秒前
chenqiumu应助积极的音响采纳,获得30
10秒前
田様应助miaomiao采纳,获得10
11秒前
齐婷婷发布了新的文献求助10
13秒前
小二郎应助甘草采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
16秒前
16秒前
田様应助魔术师采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
123a应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
芋泥波波发布了新的文献求助30
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421748
求助须知:如何正确求助?哪些是违规求助? 4536717
关于积分的说明 14154660
捐赠科研通 4453214
什么是DOI,文献DOI怎么找? 2442809
邀请新用户注册赠送积分活动 1434152
关于科研通互助平台的介绍 1411284