Self‐strengthened hydrogel actuator based on the distribution of size‐differentiated PVA crystallites

材料科学 极限抗拉强度 执行机构 双层 复合材料 人工肌肉 软机器人 肿胀 的 自愈水凝胶 计算机科学 高分子化学 化学 人工智能 生物化学
作者
Xiaohui Wang,Yarui Hou,Yiyuan Fan,Zeqi Liu,Ran Li,Xiaojun Li,Bin Yang,Qingye Liu
出处
期刊:Journal of polymer science [Wiley]
卷期号:62 (15): 3346-3359 被引量:1
标识
DOI:10.1002/pol.20240122
摘要

Abstract Soft tissues, such as muscle could autonomously grow through re‐alignment and/or ‐combination of collagen nanofibrils upon the mechanical training. This adaptive capability is highly expected in artificial materials, particularly in hydrogel actuator. In order to avoid the failure for devices by suffering from the accumulated mechanical loading, in this work, a double layered thermo‐responsive hydrogel actuator capable of self‐strengthening was successfully prepared. In the bilayer, PVA nanocrystals with different particle sizes were uniformly distributed in each monolayer matrix, giving rise to the asymmetric structure and the resultant differentiated de‐swelling behaviors. Thus, the obtained hydrogel actuator with the semi‐interpenetrating network of P(NIPAM‐co‐NMA) can display diverse programmable transformations by varying the temperatures. The existence of PVA nanocrystals in both layers not only can enhance the mechanical strength, dramatically minimizing the collapse of hydrogel actuator in service due to the imbalance of the mechanical properties for bilayer structure, but also was greatly involved in the self‐reinforcing behavior. After repetitive tensile training with 80% strain, the tensile strength and fracture strain increased from 29.6 to 45.8 kPa and 95% to 104%, respectively. The experimental results indicated that the anisotropic orientation and strain‐induced‐crystallization for PVA crystalline domains readily occurred along the tensile direction, finally leading to the synchronous enhancement in mechanical strength for both layers. This work provides a new strategy for designing smart and robust biomimetic hydrogel systems that can be further used as the intelligent soft robotics in various fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
世界纷纷扰扰完成签到,获得积分10
1秒前
1秒前
I北草蜥发布了新的文献求助10
2秒前
cc完成签到,获得积分10
3秒前
李浩完成签到 ,获得积分10
3秒前
3秒前
4秒前
小昵称完成签到,获得积分10
4秒前
Gauss应助qqy413采纳,获得30
4秒前
5秒前
缥缈纲应助复杂雪一采纳,获得10
5秒前
尾随温暖完成签到,获得积分10
6秒前
8R60d8应助听语说采纳,获得10
7秒前
我是老大应助闻人华忆采纳,获得10
8秒前
细心慕凝完成签到 ,获得积分10
8秒前
lucky发布了新的文献求助10
9秒前
10秒前
10秒前
赘婿应助gdgd采纳,获得10
12秒前
WLWLW举报red求助涉嫌违规
13秒前
13秒前
13秒前
清水涧发布了新的文献求助10
14秒前
无痕完成签到,获得积分10
16秒前
波子汽水发布了新的文献求助10
16秒前
lucky完成签到,获得积分20
17秒前
18秒前
坚强鸿煊发布了新的文献求助20
18秒前
唐泽雪穗发布了新的文献求助40
19秒前
闻人华忆发布了新的文献求助10
19秒前
隐形不凡完成签到 ,获得积分10
20秒前
20秒前
黄营关注了科研通微信公众号
21秒前
22秒前
zhangyue7777发布了新的文献求助10
23秒前
无辜健柏完成签到,获得积分10
25秒前
超然度陈完成签到,获得积分10
25秒前
YY完成签到,获得积分10
26秒前
wuxin完成签到,获得积分10
26秒前
复杂雪一完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080