A Practical Roadside Multi-View Multi-Sensor Calibration Framework Based on Monocular Vehicle Localization

校准 单眼 计算机科学 计算机视觉 人工智能 遥感 地理 数学 统计
作者
Zhiguo Zhao,Yong Li,Yunli Chen,Yiqiang Zhen,Yaqi Sun,Rui Tian
标识
DOI:10.2139/ssrn.4813778
摘要

Multi-view multi-sensor calibration (MVMSC) in roadside scenarios is a prerequisite for the fusion of multi-source information obtained by various sensors at different locations.However, the current roadside MVMSC methods based on the cascading spatial transformation (CST) can lead to considerable cumulative errors when deployed on a large scale.And traditional camera calibration in roadside MVMSC is insufficient to handle scenarios with changing camera parameters and requires significant manual intervention when deployed extensively.Additionally, existing methods are often limited to controlled or single-view scenarios, lacking consideration for various practical problems that arise in large-scale deployments.To address these challenges, this research proposes a customized roadside MVMSC framework based on monocular localization in a non-CST manner.This framework directly transforms all sensor coordinate systems into the global coordinate system, thus mitigating the accumulation of errors and minimizing the need for extensive manual intervention associated with CST.Furthermore, For achieving precise roadside monocular global localization while considering scenarios with varying camera parameters and unknown camera heading angles, this research incorporates deep learning into camera calibration, distance and angle estimation, and automatic heading angle calculation, reducing manual intervention.Finally, in mitigating the potential reduction in calibration accuracy in real-world settings, this paper utilizes geolocation cues and an optimization algorithm based on stochastic gradient descent to improve MVMSC precision.The proposed method has been systematically tested in real-world scenarios under various parameters and data conditions.Experimental results demonstrate its efficiency and accuracy advantages over previous CST-based modes.Compared to previous manual methods based on CST, our approach reduces operation time by approximately 89% and improves accuracy by about 91%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西山菩提完成签到,获得积分10
1秒前
LJ_2完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
5秒前
tian发布了新的文献求助10
5秒前
tian发布了新的文献求助10
5秒前
tian发布了新的文献求助10
5秒前
tian发布了新的文献求助10
6秒前
6秒前
我和你完成签到 ,获得积分10
7秒前
guoxihan完成签到,获得积分10
7秒前
tian发布了新的文献求助10
7秒前
tian发布了新的文献求助10
7秒前
辛勤的泽洋完成签到 ,获得积分10
11秒前
美丽觅夏完成签到 ,获得积分10
13秒前
13秒前
kanong完成签到,获得积分0
15秒前
方圆完成签到 ,获得积分10
15秒前
威武忆山完成签到 ,获得积分10
16秒前
even完成签到 ,获得积分10
18秒前
卞卞完成签到,获得积分10
20秒前
感动小笼包完成签到 ,获得积分10
20秒前
zhang完成签到 ,获得积分10
26秒前
Cold-Drink-Shop完成签到,获得积分10
26秒前
29秒前
Jimmy_King完成签到 ,获得积分10
37秒前
美好灵寒完成签到 ,获得积分10
37秒前
Yuzuru_gyq完成签到 ,获得积分10
40秒前
青檬完成签到 ,获得积分10
46秒前
宗师算个瓢啊完成签到 ,获得积分10
48秒前
宓天问完成签到,获得积分10
52秒前
hebhm完成签到,获得积分10
54秒前
害羞的墨镜完成签到,获得积分10
55秒前
lilylwy完成签到 ,获得积分0
56秒前
baishuo完成签到,获得积分10
1分钟前
水星完成签到 ,获得积分0
1分钟前
chenying完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lifenghou完成签到 ,获得积分10
1分钟前
复方黄桃干完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015568
求助须知:如何正确求助?哪些是违规求助? 3555555
关于积分的说明 11318118
捐赠科研通 3288718
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015