亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Practical Roadside Multi-View Multi-Sensor Calibration Framework Based on Monocular Vehicle Localization

校准 单眼 计算机科学 计算机视觉 人工智能 遥感 地理 数学 统计
作者
Zhiguo Zhao,Yong Li,Yunli Chen,Yiqiang Zhen,Yaqi Sun,Rui Tian
标识
DOI:10.2139/ssrn.4813778
摘要

Multi-view multi-sensor calibration (MVMSC) in roadside scenarios is a prerequisite for the fusion of multi-source information obtained by various sensors at different locations.However, the current roadside MVMSC methods based on the cascading spatial transformation (CST) can lead to considerable cumulative errors when deployed on a large scale.And traditional camera calibration in roadside MVMSC is insufficient to handle scenarios with changing camera parameters and requires significant manual intervention when deployed extensively.Additionally, existing methods are often limited to controlled or single-view scenarios, lacking consideration for various practical problems that arise in large-scale deployments.To address these challenges, this research proposes a customized roadside MVMSC framework based on monocular localization in a non-CST manner.This framework directly transforms all sensor coordinate systems into the global coordinate system, thus mitigating the accumulation of errors and minimizing the need for extensive manual intervention associated with CST.Furthermore, For achieving precise roadside monocular global localization while considering scenarios with varying camera parameters and unknown camera heading angles, this research incorporates deep learning into camera calibration, distance and angle estimation, and automatic heading angle calculation, reducing manual intervention.Finally, in mitigating the potential reduction in calibration accuracy in real-world settings, this paper utilizes geolocation cues and an optimization algorithm based on stochastic gradient descent to improve MVMSC precision.The proposed method has been systematically tested in real-world scenarios under various parameters and data conditions.Experimental results demonstrate its efficiency and accuracy advantages over previous CST-based modes.Compared to previous manual methods based on CST, our approach reduces operation time by approximately 89% and improves accuracy by about 91%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h0jian09完成签到,获得积分10
47秒前
科研通AI2S应助白华苍松采纳,获得10
2分钟前
3分钟前
捉迷藏完成签到,获得积分10
4分钟前
4分钟前
NexusExplorer应助杜梦婷采纳,获得10
5分钟前
生命奋斗应助白华苍松采纳,获得20
5分钟前
5分钟前
杜梦婷发布了新的文献求助10
5分钟前
6分钟前
牛八先生完成签到,获得积分10
6分钟前
7分钟前
wanci应助coldstork采纳,获得10
7分钟前
7分钟前
coldstork发布了新的文献求助10
7分钟前
啊哈完成签到,获得积分10
7分钟前
7分钟前
7分钟前
能干海发布了新的文献求助10
7分钟前
8分钟前
8分钟前
Jasper应助能干海采纳,获得10
8分钟前
8分钟前
一一应助白华苍松采纳,获得20
9分钟前
慕青应助喝粥阿旺采纳,获得10
9分钟前
9分钟前
喝粥阿旺发布了新的文献求助10
9分钟前
10分钟前
lena完成签到 ,获得积分10
10分钟前
能干海发布了新的文献求助10
11分钟前
茶茶完成签到,获得积分10
11分钟前
Kapur发布了新的文献求助30
11分钟前
xyu完成签到,获得积分10
11分钟前
sunny完成签到,获得积分10
11分钟前
Kapur完成签到,获得积分10
11分钟前
12分钟前
白华苍松发布了新的文献求助20
12分钟前
12分钟前
能干海完成签到,获得积分10
12分钟前
白华苍松发布了新的文献求助20
12分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229738
求助须知:如何正确求助?哪些是违规求助? 2877248
关于积分的说明 8198649
捐赠科研通 2544723
什么是DOI,文献DOI怎么找? 1374636
科研通“疑难数据库(出版商)”最低求助积分说明 647010
邀请新用户注册赠送积分活动 621836