已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Non‐destructive grading technique for mangoes using a flexible impedance sensing system and YOLOv5s_CBAM

分级(工程) 电阻抗 材料科学 生物医学工程 电气工程 工程类 土木工程
作者
Wentao Huang,Yangfeng Wang,Yunpeng Wang,Xiaoshuan Zhang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (5) 被引量:1
标识
DOI:10.1111/jfpe.14631
摘要

Abstract Flexible sensors for food quality control are experiencing rapid development. The purpose of this study is to address the time‐consuming issues associated with traditional fruit grading methods by utilizing a homemade flexible impedance sensing system (FISS). A customized spiral slide system was innovatively designed in the study to simulate the grading process on a fruit assembly line with multimodal features for low power consumption and non‐destructive evaluation. FISS integrated components such as a camera, spiral slider, 3D printed slider, latex ball, flexible impedance electrodes, and back‐end measurement circuits and successfully achieved accurate food quality assessment by using a visual classification model for primary grading based on YOLOv5s‐CBAM and an impedance feature classification model for secondary grading of mangoes based on the coefficient of variation method and threshold coefficient method. With an impressive assessment accuracy of 97.07% and a classification speed of up to 3 s/piece, the system successfully classified mangoes into seven grades covering overripe, fully ripe, ripe, unevenly ripe, unripe, underripe, and rotten states. By eliminating the reliance on complex instruments and expensive equipment, FISS provides a cost‐effective alternative for food quality control, significantly reducing operational costs. Practical applications The purpose of this study is to address the time‐consuming issues associated with traditional fruit grading methods by utilizing a homemade flexible impedance sensing system (FISS). A customized spiral slide system was innovatively designed in the study to simulate the grading process on a fruit assembly line with multimodal features for low power consumption and non‐destructive evaluation. FISS integrated components such as a camera, spiral slider, 3D printed slider, latex ball, flexible impedance electrodes, and back‐end measurement circuits and successfully achieved accurate food quality assessment by using a visual classification model for primary grading based on YOLOv5s‐CBAM and an impedance feature classification model for secondary grading of mangoes based on the coefficient of variation method and threshold coefficient method. With an impressive assessment accuracy of 97.07% and a classification speed of up to 3 s/piece, the system successfully classified mangoes into seven grades covering overripe, fully ripe, ripe, unevenly ripe, unripe, underripe, and rotten states. By eliminating the reliance on complex instruments and expensive equipment, FISS provides a cost‐effective alternative for food quality control, significantly reducing operational costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
代沁发布了新的文献求助30
1秒前
1秒前
1秒前
Liuxinyiliu完成签到,获得积分10
2秒前
125mmD91T完成签到,获得积分10
2秒前
3秒前
zyb完成签到 ,获得积分10
3秒前
刘畅发布了新的文献求助10
4秒前
莱恩完成签到 ,获得积分10
4秒前
5秒前
wanci应助MHR采纳,获得10
5秒前
fx完成签到,获得积分20
5秒前
科研通AI6.1应助桃子e采纳,获得10
5秒前
青羽发布了新的文献求助10
5秒前
6秒前
英姑应助大飞11采纳,获得10
6秒前
blossom发布了新的文献求助10
9秒前
10秒前
大个应助落寞皓轩采纳,获得10
11秒前
无限小霜完成签到,获得积分10
11秒前
11秒前
科研通AI6.1应助Handsome毛采纳,获得10
11秒前
fx发布了新的文献求助10
13秒前
13秒前
小子111完成签到,获得积分20
14秒前
16秒前
小饼干干完成签到,获得积分10
17秒前
19秒前
马越发布了新的文献求助10
20秒前
任性糖豆发布了新的文献求助30
21秒前
所所应助帅气的Taq酶采纳,获得10
21秒前
wdot发布了新的文献求助10
23秒前
JamesPei应助宇宙超人007008采纳,获得10
23秒前
23秒前
斯文败类应助马儿咯咯哒采纳,获得30
24秒前
犹豫囧应助pjjjjjjj采纳,获得10
24秒前
hkl1542发布了新的文献求助10
25秒前
26秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810