Using Artificial Intelligence To Reduce Food Waste

升级 食物垃圾 软件部署 餐饮服务 服务(商务) 运营管理 计算机科学 环境经济学 业务 数据库 工程类 营销 废物管理 经济 操作系统
作者
Yu Nu,Elena Belavina,Karan Girotra
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4826777
摘要

In this study, we estimate the reduction in food waste that arises from the deployment of a system that digitally records instances of food items discarded in a commercial kitchen. We also shed light on the mechanisms that drive this impact. In a quasi-experimental setting, where the system was deployed in approximately 900 kitchens in a staggered manner, we estimate the impact using the synthetic difference-in-differences method. We find that three months after adoption, kitchens generate 29% lower food waste, on average, than they would have in the absence of the system— without any corresponding reductions in sales. Utilizing a long-short-term-memory fully- convolutional-network classifier, we document that these reductions are accompanied by a 23% decrease in demand chasing, a known bias in human inventory management. Upgrading to a system that uses computer vision to automate waste classification leads to a further 30% reduction in food waste generated by the kitchen a year after the upgrade. This further reduction is due to the accurate recording of infrequent but very high-impact instances of food wasted that employees avoid entering manually. We also observe substantial effect heterogeneity. Smaller kitchens and those with buffet service (vs. table service) experience almost double the reduction in food waste from the adoption of the system and also from the computer vision upgrade. Low and high-demand- variability sites have higher reductions from adoption than those with medium-demand-variability (42% vs 25%). The impacts of the upgrade are not detectably different with different demand variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIANYOUFU完成签到,获得积分10
刚刚
刚刚
4秒前
4秒前
厚颜无耻之人完成签到,获得积分10
5秒前
6秒前
天天完成签到 ,获得积分10
7秒前
唐新惠完成签到 ,获得积分10
8秒前
英俊的铭应助chen采纳,获得10
8秒前
8秒前
winnie完成签到,获得积分20
9秒前
diaiyi发布了新的文献求助10
10秒前
LL发布了新的文献求助10
11秒前
忧伤的靖柔完成签到,获得积分10
12秒前
留胡子的霖完成签到,获得积分10
14秒前
苇一完成签到,获得积分10
14秒前
callous完成签到,获得积分10
14秒前
wwsbb发布了新的文献求助10
16秒前
17秒前
JJ完成签到,获得积分10
19秒前
Orange应助小安采纳,获得10
23秒前
yangling0124完成签到,获得积分10
23秒前
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
杨羕完成签到,获得积分10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得30
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
孤独天薇完成签到 ,获得积分10
30秒前
wwyy完成签到,获得积分10
31秒前
铠甲勇士完成签到,获得积分10
31秒前
细心书蕾完成签到 ,获得积分10
32秒前
you完成签到,获得积分10
36秒前
i说晚安完成签到,获得积分10
36秒前
干净的向真完成签到,获得积分10
37秒前
CipherSage应助maliang666采纳,获得10
38秒前
大胖完成签到,获得积分10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140237
求助须知:如何正确求助?哪些是违规求助? 2791023
关于积分的说明 7797649
捐赠科研通 2447480
什么是DOI,文献DOI怎么找? 1301910
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194