已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Artificial Intelligence To Reduce Food Waste

升级 食物垃圾 软件部署 餐饮服务 服务(商务) 运营管理 计算机科学 环境经济学 业务 数据库 工程类 营销 废物管理 经济 操作系统
作者
Yu Nu,Elena Belavina,Karan Girotra
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4826777
摘要

In this study, we estimate the reduction in food waste that arises from the deployment of a system that digitally records instances of food items discarded in a commercial kitchen. We also shed light on the mechanisms that drive this impact. In a quasi-experimental setting, where the system was deployed in approximately 900 kitchens in a staggered manner, we estimate the impact using the synthetic difference-in-differences method. We find that three months after adoption, kitchens generate 29% lower food waste, on average, than they would have in the absence of the system— without any corresponding reductions in sales. Utilizing a long-short-term-memory fully- convolutional-network classifier, we document that these reductions are accompanied by a 23% decrease in demand chasing, a known bias in human inventory management. Upgrading to a system that uses computer vision to automate waste classification leads to a further 30% reduction in food waste generated by the kitchen a year after the upgrade. This further reduction is due to the accurate recording of infrequent but very high-impact instances of food wasted that employees avoid entering manually. We also observe substantial effect heterogeneity. Smaller kitchens and those with buffet service (vs. table service) experience almost double the reduction in food waste from the adoption of the system and also from the computer vision upgrade. Low and high-demand- variability sites have higher reductions from adoption than those with medium-demand-variability (42% vs 25%). The impacts of the upgrade are not detectably different with different demand variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Qinghen采纳,获得10
刚刚
好运公主发布了新的文献求助10
刚刚
刚刚
kbd应助阔达初南采纳,获得10
1秒前
1秒前
3秒前
ccm发布了新的文献求助10
3秒前
5秒前
Jy完成签到,获得积分10
6秒前
虚心碧完成签到,获得积分10
7秒前
NexusExplorer应助Murphy采纳,获得10
8秒前
9秒前
9秒前
dyy完成签到,获得积分10
10秒前
606完成签到,获得积分10
11秒前
噗宝凹发布了新的文献求助10
11秒前
zzz发布了新的文献求助10
12秒前
askdha发布了新的文献求助10
13秒前
ccm发布了新的文献求助10
15秒前
小蘑菇应助WJP采纳,获得10
15秒前
科研小南完成签到 ,获得积分10
16秒前
16秒前
小南完成签到,获得积分10
16秒前
谦让的啤酒完成签到,获得积分10
17秒前
香锅不要辣完成签到 ,获得积分10
17秒前
思源应助噗宝凹采纳,获得10
19秒前
阳光问安完成签到 ,获得积分10
21秒前
无3发布了新的文献求助10
22秒前
归尘应助长孙一手采纳,获得10
23秒前
cbc完成签到,获得积分10
23秒前
kyouu完成签到,获得积分10
24秒前
24秒前
25秒前
王不留行发布了新的文献求助10
26秒前
L1ghtshow完成签到,获得积分10
26秒前
Jiro完成签到,获得积分10
27秒前
汉堡包应助伶俐的剑封采纳,获得10
27秒前
追寻的念波完成签到,获得积分20
28秒前
ccm发布了新的文献求助10
29秒前
李健的小迷弟应助muxiangrong采纳,获得200
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209140
求助须知:如何正确求助?哪些是违规求助? 4386469
关于积分的说明 13660937
捐赠科研通 4245610
什么是DOI,文献DOI怎么找? 2329382
邀请新用户注册赠送积分活动 1327206
关于科研通互助平台的介绍 1279519