Using Artificial Intelligence To Reduce Food Waste

升级 食物垃圾 软件部署 餐饮服务 服务(商务) 运营管理 计算机科学 环境经济学 业务 数据库 工程类 营销 废物管理 经济 操作系统
作者
Yu Nu,Elena Belavina,Karan Girotra
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4826777
摘要

In this study, we estimate the reduction in food waste that arises from the deployment of a system that digitally records instances of food items discarded in a commercial kitchen. We also shed light on the mechanisms that drive this impact. In a quasi-experimental setting, where the system was deployed in approximately 900 kitchens in a staggered manner, we estimate the impact using the synthetic difference-in-differences method. We find that three months after adoption, kitchens generate 29% lower food waste, on average, than they would have in the absence of the system— without any corresponding reductions in sales. Utilizing a long-short-term-memory fully- convolutional-network classifier, we document that these reductions are accompanied by a 23% decrease in demand chasing, a known bias in human inventory management. Upgrading to a system that uses computer vision to automate waste classification leads to a further 30% reduction in food waste generated by the kitchen a year after the upgrade. This further reduction is due to the accurate recording of infrequent but very high-impact instances of food wasted that employees avoid entering manually. We also observe substantial effect heterogeneity. Smaller kitchens and those with buffet service (vs. table service) experience almost double the reduction in food waste from the adoption of the system and also from the computer vision upgrade. Low and high-demand- variability sites have higher reductions from adoption than those with medium-demand-variability (42% vs 25%). The impacts of the upgrade are not detectably different with different demand variability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研搬运工采纳,获得10
1秒前
李爱国应助Hilda007采纳,获得10
1秒前
小罗在无锡完成签到,获得积分10
1秒前
2秒前
GHX完成签到 ,获得积分10
3秒前
PKL完成签到,获得积分10
3秒前
4秒前
空白发布了新的文献求助10
4秒前
8秒前
空白完成签到,获得积分10
8秒前
zhlh完成签到,获得积分10
9秒前
10秒前
英姑应助无糖零脂采纳,获得10
10秒前
无心的苡完成签到,获得积分10
11秒前
清脆映真发布了新的文献求助10
12秒前
水123发布了新的文献求助10
12秒前
heniancheng完成签到 ,获得积分10
12秒前
netus完成签到,获得积分10
13秒前
xingcheng完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
16秒前
汪汪汪完成签到,获得积分10
17秒前
明亮的绫完成签到 ,获得积分10
18秒前
不过尔尔完成签到 ,获得积分10
18秒前
Li完成签到,获得积分10
19秒前
Hilda007发布了新的文献求助10
20秒前
pluto应助斯文的芹菜采纳,获得150
20秒前
林夕完成签到,获得积分10
21秒前
21秒前
22秒前
yybo完成签到,获得积分10
22秒前
zzz发布了新的文献求助10
22秒前
22秒前
xzz完成签到,获得积分10
23秒前
23秒前
拼搏的寒珊完成签到,获得积分10
24秒前
慕青应助香蕉雅山采纳,获得10
24秒前
周周完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603942
求助须知:如何正确求助?哪些是违规求助? 4688789
关于积分的说明 14856201
捐赠科研通 4695596
什么是DOI,文献DOI怎么找? 2541056
邀请新用户注册赠送积分活动 1507200
关于科研通互助平台的介绍 1471832