亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Artificial Intelligence To Reduce Food Waste

升级 食物垃圾 软件部署 餐饮服务 服务(商务) 运营管理 计算机科学 环境经济学 业务 数据库 工程类 营销 废物管理 经济 操作系统
作者
Yu Nu,Elena Belavina,Karan Girotra
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4826777
摘要

In this study, we estimate the reduction in food waste that arises from the deployment of a system that digitally records instances of food items discarded in a commercial kitchen. We also shed light on the mechanisms that drive this impact. In a quasi-experimental setting, where the system was deployed in approximately 900 kitchens in a staggered manner, we estimate the impact using the synthetic difference-in-differences method. We find that three months after adoption, kitchens generate 29% lower food waste, on average, than they would have in the absence of the system— without any corresponding reductions in sales. Utilizing a long-short-term-memory fully- convolutional-network classifier, we document that these reductions are accompanied by a 23% decrease in demand chasing, a known bias in human inventory management. Upgrading to a system that uses computer vision to automate waste classification leads to a further 30% reduction in food waste generated by the kitchen a year after the upgrade. This further reduction is due to the accurate recording of infrequent but very high-impact instances of food wasted that employees avoid entering manually. We also observe substantial effect heterogeneity. Smaller kitchens and those with buffet service (vs. table service) experience almost double the reduction in food waste from the adoption of the system and also from the computer vision upgrade. Low and high-demand- variability sites have higher reductions from adoption than those with medium-demand-variability (42% vs 25%). The impacts of the upgrade are not detectably different with different demand variability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
迷路千琴发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
7秒前
10秒前
tlx发布了新的文献求助10
14秒前
xmg完成签到,获得积分20
18秒前
共享精神应助一周采纳,获得10
18秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
gexzygg应助科研通管家采纳,获得10
21秒前
shhoing应助科研通管家采纳,获得10
21秒前
21秒前
qpp完成签到,获得积分10
21秒前
beiwei完成签到 ,获得积分10
23秒前
23秒前
葡萄发布了新的文献求助10
27秒前
32秒前
情怀应助tlx采纳,获得30
35秒前
小蘑菇应助Qiaoguliang采纳,获得10
35秒前
35秒前
40秒前
葡萄完成签到,获得积分10
41秒前
bgim发布了新的文献求助10
44秒前
51秒前
53秒前
53秒前
一周发布了新的文献求助10
56秒前
56秒前
Qiaoguliang发布了新的文献求助10
57秒前
1分钟前
lyb1853关注了科研通微信公众号
1分钟前
波恰发布了新的文献求助10
1分钟前
飞快的孱发布了新的文献求助10
1分钟前
1分钟前
三三完成签到 ,获得积分0
1分钟前
1分钟前
horizon发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549098
求助须知:如何正确求助?哪些是违规求助? 4634430
关于积分的说明 14634667
捐赠科研通 4575878
什么是DOI,文献DOI怎么找? 2509325
邀请新用户注册赠送积分活动 1485283
关于科研通互助平台的介绍 1456402