Spatial Analysis in Geology Using R

地质学 地理 地貌学
作者
Pedro Nogueira
标识
DOI:10.1201/9781032651880
摘要

The integration of geology with data science disciplines, such as spatial statistics, remote sensing, and geographic information systems (GIS), has given rise to a shift in many natural sciences schools, pushing the boundaries of knowledge and enabling new discoveries in geological processes and earth systems. Spatial analysis of geological data can be used to identify patterns and trends in data, to map spatial relationships, and to model spatial processes. R is a consolidated and yet growing statistical programming language with increasing value in spatial analysis often replacing, with advantage, GIS tools. By providing a comprehensive guide for geologists to harness the power of spatial analysis in R, Spatial Analysis in Geology Using R serves as a tool in addressing real-world problems, such as natural resource management, environmental conservation, and hazard prediction and mitigation. Features: Provides a practical and accessible overview of spatial analysis in geology using R Organised in three independent and complementary parts: Introduction to R, Spatial Analysis with R, and Spatial Statistics and Modelling Applied approach with many detailed examples and case studies using real geological data Presents a collection of R packages that are useful in many geological situations Does not assume any prior knowledge of R; all code are explained in detail Supplemented by a website with all data, code, and examples Spatial Analysis in Geology Using R will be useful to any geological researcher who has acquired basic spatial analysis skills, often using GIS, and is interested in deepening those skills through the use of R. It could be used as a reference by applied researchers and analysts in public, private, or third-sector industries. It could also be used to teach a course on the topic to graduate students or for self-study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
刘郭纹发布了新的文献求助10
1秒前
1秒前
oliv发布了新的文献求助10
2秒前
2秒前
大胆香菇完成签到,获得积分10
3秒前
灯灯发布了新的文献求助10
3秒前
4秒前
pluto应助如意闭月采纳,获得10
4秒前
孙佳琦发布了新的文献求助10
4秒前
doctorbba发布了新的文献求助10
5秒前
NexusExplorer应助天边的云采纳,获得10
5秒前
搜集达人应助自信鞯采纳,获得10
5秒前
6秒前
小二郎应助spd采纳,获得10
7秒前
CipherSage应助认真的一刀采纳,获得10
7秒前
8秒前
Mathilda完成签到,获得积分10
10秒前
彭于晏应助bfs采纳,获得100
12秒前
12秒前
13秒前
梨老师完成签到,获得积分20
13秒前
劲秉应助何何何何采纳,获得10
13秒前
现实的又夏完成签到,获得积分10
17秒前
七慕凉应助开放的悒采纳,获得20
17秒前
伶俐绿柏发布了新的文献求助10
17秒前
17秒前
18秒前
大胆香菇发布了新的文献求助10
18秒前
Dobby发布了新的文献求助150
20秒前
20秒前
Orange应助幸福代柔采纳,获得20
21秒前
爱吃玉米发布了新的文献求助10
22秒前
孙佳琦完成签到,获得积分10
23秒前
Aaron完成签到,获得积分10
23秒前
23秒前
24秒前
26秒前
NexusExplorer应助疯少采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728189
求助须知:如何正确求助?哪些是违规求助? 3273312
关于积分的说明 9981043
捐赠科研通 2988689
什么是DOI,文献DOI怎么找? 1639744
邀请新用户注册赠送积分活动 778973
科研通“疑难数据库(出版商)”最低求助积分说明 747838