A robust optimization framework for two‐echelon vehicle and UAV routing for post‐disaster humanitarian logistics operations

车辆路径问题 人道主义后勤 稳健优化 计算机科学 布线(电子设计自动化) 运筹学 航空学 业务 运营管理 工程类 过程管理 数学优化 计算机网络 数学
作者
Tasnim Ibn Faiz,Chrysafis Vogiatzis,Jiongbai Liu,Md. Noor‐E‐Alam
出处
期刊:Networks [Wiley]
卷期号:84 (2): 200-219 被引量:2
标识
DOI:10.1002/net.22233
摘要

Abstract Providing first aid and other supplies (e.g., epi‐pens, medical supplies, dry food, water) during and after a disaster is always challenging. The complexity of these operations increases when the transportation, power, and communications networks fail, leaving people stranded and unable to communicate their locations and needs. The advent of emerging technologies like uncrewed autonomous vehicles can help humanitarian logistics providers reach otherwise stranded populations after transportation network failures. However, due to the failures in telecommunication infrastructure, demand for emergency aid can become uncertain. To address the challenges of delivering emergency aid to trapped populations with failing infrastructure networks, we propose a novel robust computational framework for a two‐echelon vehicle routing problem that uses uncrewed autonomous vehicles (UAVs), or drones, for the deliveries. We formulate the problem as a two‐stage robust optimization model to handle demand uncertainty. Then, we propose a column‐and‐constraint generation approach for worst‐case demand scenario generation for a given set of truck and UAV routes. Moreover, we develop a decomposition scheme inspired by the column generation approach to generate UAV routes for a set of demand scenarios heuristically. Finally, we combine the decomposition scheme within the column‐and‐constraint generation approach to determine robust routes for both trucks (first echelon vehicles) and UAVs (second echelon vehicles), the time that affected communities are served, and the quantities of aid materials delivered. To validate our proposed algorithms, we use a simulated dataset that aims to recreate emergency aid requests in different areas of Puerto Rico after Hurricane Maria in 2017.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中凌乱完成签到 ,获得积分10
1秒前
辣辣辣辣辣完成签到,获得积分10
1秒前
2秒前
可靠sue发布了新的文献求助10
3秒前
wuwa完成签到,获得积分10
4秒前
4秒前
小蘑菇应助haisiaa采纳,获得10
5秒前
5秒前
Sid应助c2采纳,获得100
6秒前
6秒前
7秒前
白熊完成签到,获得积分10
7秒前
陶醉的熊完成签到,获得积分10
7秒前
时笙发布了新的文献求助10
8秒前
12秒前
小蘑菇应助黑色土豆采纳,获得10
12秒前
可靠sue完成签到,获得积分10
13秒前
激情的白枫完成签到 ,获得积分10
16秒前
咕咕发布了新的文献求助10
17秒前
17秒前
慕青应助ningqing采纳,获得10
17秒前
罗里完成签到 ,获得积分10
20秒前
21秒前
21秒前
haisiaa发布了新的文献求助10
24秒前
州府十三发布了新的文献求助10
24秒前
24秒前
科研通AI5应助时笙采纳,获得20
25秒前
亚鹏完成签到,获得积分10
27秒前
fan完成签到,获得积分10
28秒前
咕咕完成签到 ,获得积分10
28秒前
31秒前
31秒前
情怀应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
大个应助科研通管家采纳,获得10
32秒前
李爱国应助科研通管家采纳,获得10
32秒前
wdy111应助科研通管家采纳,获得10
32秒前
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176