作者
Fang Liu,Yufei Hou,Xin Chen,Ziqiong Chen,Guiting Su,Ruhui Lin
摘要
Background This study aimed to investigate whether moxibustion could affect PI3K/Akt pathway to regulate Transforming acidic coiled-coil containing protein 3 (TACC3) and promote axonal regeneration to improve learning and memory function in middle cerebral artery occlusion (MCAO) rats. Methods Sixty SD rats were randomly divided into 4 groups: sham-operated control group (SC), model control group (MC), model+moxibustion group (MM), and model+inhibitor+moxibustion group (MIM). The rats in MC, MM, and MIM groups were made into MCAO models, and PI3K inhibitor LY294002 was injected into the rats in MIM group before modeling; while the rats in SC group were only treated with artery separation without monofilament inserting. After that, the rats in MM and MIM groups were intervented with moxibustion. We used the Zea-Longa scale, micro-Magnetic Resonance Imaging (micro-MRI), Morris water maze (MWM), TUNEL, western blot (WB), immunofluorescence and immunohistochemistry to evaluate the neurological deficits, cerebral infarct volume, learning and memory, apoptotic cell percentage in the hippocampal, the expression level of axonal regeneration and PI3K/AKt related proteins, the expression level of TACC3. The detection of 2h after surgery showed the result before moxibustion and 7 days after the intervention showed the results after moxibustion. Results After 7d of intervention, the scores of Zea-Longa and the cerebral infarct volume, the escape latency, the percentage of apoptosis cells of MM group were lower than that of MC and MIM groups; the frequency of rats crossed the previous platform location, PI3K, p-Akt/t-Akt and TACC3, the level of GAP-43 in MM group was more than MC and MIM groups (P < 0.05). While no statistical difference existed between MIM group and MC group (P > 0.05). Conclusion Moxibustion can promote axonal regeneration and improve learning and memory of Post-stroke cognitive impairment via activating the PI3K/AKT signaling pathway and TACC3.