清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Adaptive Intrusion Detection System in Industrial Internet of Things(IIoT) using Deep Learning

工业互联网 计算机科学 入侵检测系统 物联网 互联网 深度学习 人工智能 计算机安全 万维网
作者
E. V. N. Jyothi,M. Kranthi,S. Sailaja,U Sesadri,Sridhar N. Koka,Pundru Chandra Shaker Reddy
标识
DOI:10.1109/istems60181.2024.10560245
摘要

The Industrial-Internet-of-Things (IIoT) is a product of the extensive use of the Internet-of-Things(IoT) in vital industries including manufacturing and industrial production. To improve industrial and manufacturing processes, the IIoT integrates sensors, actuators, and smart tools that can interact with each other. There are many advantages to IIoT for service providers and customers alike, but privacy and security are still major concerns. Cyberattacks in such a network have been reduced with the use of an intrusion detection system (IDS). Nevertheless, several current IIoT intrusion detection systems (IDS) suffer from issues such as an incomplete list of the network's attack kinds, an excessive number of features, models constructed using outdated datasets, and an absence of attention to the issue of imbalanced datasets. Our proposed intelligent recognition system can spot cyberattacks in IIoT-networks, which will help with the difficulties. Singular value decomposition (SVD) is employed by the suggested model to decrease data characteristics and enhance detection outcomes. If we want to keep our classifications from being biased due to over-fitting or under-fitting, we employ the SMOTE method. Data has been classified using a number of deep learning and machine learning techniques for both binary and multi-class purposes. We test the suggested intelligent model on the ToN_ IoT dataset to see how well it performs. With the suggested method, we were able to achieve a 99.98% accuracy rate and a lowered error rate of 0.016% for multi-class classification, and a 0.001 % reduction in the error rate for binary classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
我独舞完成签到 ,获得积分10
15秒前
任性翠安完成签到 ,获得积分10
21秒前
英俊的铭应助111111111采纳,获得10
35秒前
疯狂的囧完成签到 ,获得积分10
51秒前
57秒前
开心每一天完成签到 ,获得积分10
1分钟前
111111111发布了新的文献求助10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
poki完成签到 ,获得积分10
1分钟前
1分钟前
Jasper应助怪杰采纳,获得10
1分钟前
陌上之心完成签到 ,获得积分10
1分钟前
1分钟前
yi完成签到 ,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
文献搬运工完成签到 ,获得积分10
1分钟前
怪杰发布了新的文献求助10
1分钟前
蚂蚁踢大象完成签到 ,获得积分10
1分钟前
无敌暴龙战神完成签到,获得积分10
1分钟前
科研通AI2S应助111111111采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
科目三应助Una采纳,获得10
2分钟前
GG完成签到 ,获得积分10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
2分钟前
Una发布了新的文献求助10
2分钟前
METEOR完成签到 ,获得积分10
2分钟前
CipherSage应助飞翔的企鹅采纳,获得10
2分钟前
深情安青应助细心的语蓉采纳,获得10
3分钟前
六一儿童节完成签到 ,获得积分10
3分钟前
3分钟前
满意的伊完成签到,获得积分10
3分钟前
3分钟前
3分钟前
qq完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292