An Adaptive Intrusion Detection System in Industrial Internet of Things(IIoT) using Deep Learning

工业互联网 计算机科学 入侵检测系统 物联网 互联网 深度学习 人工智能 计算机安全 万维网
作者
E. V. N. Jyothi,M. Kranthi,S. Sailaja,U Sesadri,Sridhar N. Koka,Pundru Chandra Shaker Reddy
标识
DOI:10.1109/istems60181.2024.10560245
摘要

The Industrial-Internet-of-Things (IIoT) is a product of the extensive use of the Internet-of-Things(IoT) in vital industries including manufacturing and industrial production. To improve industrial and manufacturing processes, the IIoT integrates sensors, actuators, and smart tools that can interact with each other. There are many advantages to IIoT for service providers and customers alike, but privacy and security are still major concerns. Cyberattacks in such a network have been reduced with the use of an intrusion detection system (IDS). Nevertheless, several current IIoT intrusion detection systems (IDS) suffer from issues such as an incomplete list of the network's attack kinds, an excessive number of features, models constructed using outdated datasets, and an absence of attention to the issue of imbalanced datasets. Our proposed intelligent recognition system can spot cyberattacks in IIoT-networks, which will help with the difficulties. Singular value decomposition (SVD) is employed by the suggested model to decrease data characteristics and enhance detection outcomes. If we want to keep our classifications from being biased due to over-fitting or under-fitting, we employ the SMOTE method. Data has been classified using a number of deep learning and machine learning techniques for both binary and multi-class purposes. We test the suggested intelligent model on the ToN_ IoT dataset to see how well it performs. With the suggested method, we were able to achieve a 99.98% accuracy rate and a lowered error rate of 0.016% for multi-class classification, and a 0.001 % reduction in the error rate for binary classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wx0816发布了新的文献求助10
刚刚
ZOE应助大力蚂蚁采纳,获得50
1秒前
科目三应助退休小行星采纳,获得10
2秒前
4秒前
kk完成签到 ,获得积分10
4秒前
6秒前
6秒前
9秒前
zz发布了新的文献求助10
9秒前
wx0816完成签到,获得积分10
9秒前
10秒前
JingjingYao完成签到,获得积分10
11秒前
weiwei完成签到,获得积分10
11秒前
DD0066发布了新的文献求助10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
ieee拯救者完成签到,获得积分10
12秒前
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
lexi应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
zhonglv7应助科研通管家采纳,获得10
13秒前
曾无忧应助科研通管家采纳,获得10
13秒前
曾无忧应助科研通管家采纳,获得10
13秒前
曾无忧应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
如溪如何完成签到,获得积分10
14秒前
Jasper应助呵呵呵采纳,获得10
14秒前
小华安发布了新的文献求助10
14秒前
慕青应助虚心碧采纳,获得10
15秒前
hj完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832