An Adaptive Intrusion Detection System in Industrial Internet of Things(IIoT) using Deep Learning

工业互联网 计算机科学 入侵检测系统 物联网 互联网 深度学习 人工智能 计算机安全 万维网
作者
E. V. N. Jyothi,M. Kranthi,S. Sailaja,U Sesadri,Sridhar N. Koka,Pundru Chandra Shaker Reddy
标识
DOI:10.1109/istems60181.2024.10560245
摘要

The Industrial-Internet-of-Things (IIoT) is a product of the extensive use of the Internet-of-Things(IoT) in vital industries including manufacturing and industrial production. To improve industrial and manufacturing processes, the IIoT integrates sensors, actuators, and smart tools that can interact with each other. There are many advantages to IIoT for service providers and customers alike, but privacy and security are still major concerns. Cyberattacks in such a network have been reduced with the use of an intrusion detection system (IDS). Nevertheless, several current IIoT intrusion detection systems (IDS) suffer from issues such as an incomplete list of the network's attack kinds, an excessive number of features, models constructed using outdated datasets, and an absence of attention to the issue of imbalanced datasets. Our proposed intelligent recognition system can spot cyberattacks in IIoT-networks, which will help with the difficulties. Singular value decomposition (SVD) is employed by the suggested model to decrease data characteristics and enhance detection outcomes. If we want to keep our classifications from being biased due to over-fitting or under-fitting, we employ the SMOTE method. Data has been classified using a number of deep learning and machine learning techniques for both binary and multi-class purposes. We test the suggested intelligent model on the ToN_ IoT dataset to see how well it performs. With the suggested method, we were able to achieve a 99.98% accuracy rate and a lowered error rate of 0.016% for multi-class classification, and a 0.001 % reduction in the error rate for binary classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HU完成签到 ,获得积分10
1秒前
狄1234567发布了新的文献求助10
1秒前
丘比特应助积极的人生采纳,获得10
2秒前
萧水白应助elunxu采纳,获得10
3秒前
3秒前
夜月残阳完成签到,获得积分10
7秒前
小张不慌完成签到,获得积分10
8秒前
8秒前
顾瞻完成签到,获得积分10
8秒前
积极人偶酱完成签到,获得积分10
9秒前
迷路的初柔完成签到 ,获得积分10
11秒前
momo完成签到 ,获得积分10
11秒前
12秒前
13秒前
Flex完成签到,获得积分10
13秒前
玛卡巴卡完成签到 ,获得积分10
15秒前
俭朴的世立完成签到,获得积分10
15秒前
16秒前
梅莉达发布了新的文献求助10
16秒前
柠檬不吃酸完成签到 ,获得积分10
18秒前
布丁布丁发布了新的文献求助50
19秒前
aa1212121完成签到,获得积分10
24秒前
24秒前
25秒前
徐rl完成签到 ,获得积分10
27秒前
wawaeryu完成签到,获得积分10
29秒前
29秒前
丘芭比母捏牛完成签到,获得积分10
30秒前
甜滋滋发布了新的文献求助10
31秒前
31秒前
蔡从安发布了新的文献求助10
32秒前
神宝宝完成签到,获得积分10
33秒前
年年发布了新的文献求助10
34秒前
头孢克肟完成签到 ,获得积分10
36秒前
36秒前
yiooo发布了新的文献求助10
36秒前
布丁布丁完成签到,获得积分10
38秒前
38秒前
39秒前
甜滋滋完成签到,获得积分10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308414
求助须知:如何正确求助?哪些是违规求助? 2941779
关于积分的说明 8505616
捐赠科研通 2616610
什么是DOI,文献DOI怎么找? 1429744
科研通“疑难数据库(出版商)”最低求助积分说明 663869
邀请新用户注册赠送积分活动 648898