An Adaptive Intrusion Detection System in Industrial Internet of Things(IIoT) using Deep Learning

工业互联网 计算机科学 入侵检测系统 物联网 互联网 深度学习 人工智能 计算机安全 万维网
作者
E. V. N. Jyothi,M. Kranthi,S. Sailaja,U Sesadri,Sridhar N. Koka,Pundru Chandra Shaker Reddy
标识
DOI:10.1109/istems60181.2024.10560245
摘要

The Industrial-Internet-of-Things (IIoT) is a product of the extensive use of the Internet-of-Things(IoT) in vital industries including manufacturing and industrial production. To improve industrial and manufacturing processes, the IIoT integrates sensors, actuators, and smart tools that can interact with each other. There are many advantages to IIoT for service providers and customers alike, but privacy and security are still major concerns. Cyberattacks in such a network have been reduced with the use of an intrusion detection system (IDS). Nevertheless, several current IIoT intrusion detection systems (IDS) suffer from issues such as an incomplete list of the network's attack kinds, an excessive number of features, models constructed using outdated datasets, and an absence of attention to the issue of imbalanced datasets. Our proposed intelligent recognition system can spot cyberattacks in IIoT-networks, which will help with the difficulties. Singular value decomposition (SVD) is employed by the suggested model to decrease data characteristics and enhance detection outcomes. If we want to keep our classifications from being biased due to over-fitting or under-fitting, we employ the SMOTE method. Data has been classified using a number of deep learning and machine learning techniques for both binary and multi-class purposes. We test the suggested intelligent model on the ToN_ IoT dataset to see how well it performs. With the suggested method, we were able to achieve a 99.98% accuracy rate and a lowered error rate of 0.016% for multi-class classification, and a 0.001 % reduction in the error rate for binary classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助wdfddzh采纳,获得10
刚刚
feiyang完成签到,获得积分10
刚刚
yuliyixue完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
ohnono完成签到,获得积分10
1秒前
三木完成签到 ,获得积分10
2秒前
科研通AI6应助一安采纳,获得10
3秒前
wwj1009完成签到 ,获得积分10
3秒前
3秒前
开心雁凡发布了新的文献求助10
3秒前
启蒙发布了新的文献求助20
3秒前
4秒前
青黛完成签到 ,获得积分10
4秒前
犹豫小翠发布了新的文献求助10
5秒前
半夏完成签到,获得积分10
5秒前
5秒前
dachuichui完成签到,获得积分10
6秒前
机灵语雪完成签到,获得积分10
6秒前
上官若男应助科研废人采纳,获得10
6秒前
柳易槐发布了新的文献求助10
7秒前
脑洞疼应助衷医课代表采纳,获得10
7秒前
taozjju完成签到,获得积分10
8秒前
8秒前
奋斗的大白菜完成签到,获得积分10
8秒前
WZH完成签到 ,获得积分10
8秒前
8秒前
啊是是是完成签到,获得积分10
8秒前
8秒前
Brad_AN完成签到,获得积分10
9秒前
开心雁凡完成签到,获得积分10
10秒前
yydsyk完成签到,获得积分10
10秒前
群山完成签到 ,获得积分10
11秒前
tfr06完成签到,获得积分10
11秒前
liufengjie发布了新的文献求助20
11秒前
灯灯完成签到,获得积分10
12秒前
xixihaha完成签到,获得积分10
12秒前
zq完成签到 ,获得积分10
12秒前
Mininine完成签到,获得积分10
13秒前
13秒前
张张发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451