An Adaptive Intrusion Detection System in Industrial Internet of Things(IIoT) using Deep Learning

工业互联网 计算机科学 入侵检测系统 物联网 互联网 深度学习 人工智能 计算机安全 万维网
作者
E. V. N. Jyothi,M. Kranthi,S. Sailaja,U Sesadri,Sridhar N. Koka,Pundru Chandra Shaker Reddy
标识
DOI:10.1109/istems60181.2024.10560245
摘要

The Industrial-Internet-of-Things (IIoT) is a product of the extensive use of the Internet-of-Things(IoT) in vital industries including manufacturing and industrial production. To improve industrial and manufacturing processes, the IIoT integrates sensors, actuators, and smart tools that can interact with each other. There are many advantages to IIoT for service providers and customers alike, but privacy and security are still major concerns. Cyberattacks in such a network have been reduced with the use of an intrusion detection system (IDS). Nevertheless, several current IIoT intrusion detection systems (IDS) suffer from issues such as an incomplete list of the network's attack kinds, an excessive number of features, models constructed using outdated datasets, and an absence of attention to the issue of imbalanced datasets. Our proposed intelligent recognition system can spot cyberattacks in IIoT-networks, which will help with the difficulties. Singular value decomposition (SVD) is employed by the suggested model to decrease data characteristics and enhance detection outcomes. If we want to keep our classifications from being biased due to over-fitting or under-fitting, we employ the SMOTE method. Data has been classified using a number of deep learning and machine learning techniques for both binary and multi-class purposes. We test the suggested intelligent model on the ToN_ IoT dataset to see how well it performs. With the suggested method, we were able to achieve a 99.98% accuracy rate and a lowered error rate of 0.016% for multi-class classification, and a 0.001 % reduction in the error rate for binary classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅特卡夫完成签到,获得积分10
1秒前
dayday完成签到,获得积分10
1秒前
1秒前
科研王子完成签到 ,获得积分10
2秒前
sunyz应助77采纳,获得50
6秒前
Sofia完成签到 ,获得积分0
6秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
14秒前
shouz完成签到,获得积分10
14秒前
田様应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得30
14秒前
shtatbf应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
15秒前
Spring完成签到,获得积分10
17秒前
Wang完成签到,获得积分10
20秒前
晚霞完成签到 ,获得积分10
20秒前
laihama完成签到,获得积分10
24秒前
天真南松完成签到,获得积分10
24秒前
IV完成签到 ,获得积分10
25秒前
Uu完成签到 ,获得积分10
27秒前
MrChew完成签到 ,获得积分10
27秒前
单身的溪流完成签到,获得积分10
27秒前
潇潇完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
大力的诗蕾完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
Aeeeeeeon完成签到 ,获得积分10
35秒前
PQ完成签到,获得积分10
37秒前
39秒前
keyanxinshou完成签到 ,获得积分10
39秒前
von完成签到,获得积分10
39秒前
王平安完成签到 ,获得积分10
41秒前
沫柠完成签到 ,获得积分10
41秒前
甜蜜冷风完成签到,获得积分10
42秒前
怀南完成签到 ,获得积分10
42秒前
计划逃跑完成签到 ,获得积分10
44秒前
朴素海亦完成签到 ,获得积分10
47秒前
jixuchance完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858