An Adaptive Intrusion Detection System in Industrial Internet of Things(IIoT) using Deep Learning

工业互联网 计算机科学 入侵检测系统 物联网 互联网 深度学习 人工智能 计算机安全 万维网
作者
E. V. N. Jyothi,M. Kranthi,S. Sailaja,U Sesadri,Sridhar N. Koka,Pundru Chandra Shaker Reddy
标识
DOI:10.1109/istems60181.2024.10560245
摘要

The Industrial-Internet-of-Things (IIoT) is a product of the extensive use of the Internet-of-Things(IoT) in vital industries including manufacturing and industrial production. To improve industrial and manufacturing processes, the IIoT integrates sensors, actuators, and smart tools that can interact with each other. There are many advantages to IIoT for service providers and customers alike, but privacy and security are still major concerns. Cyberattacks in such a network have been reduced with the use of an intrusion detection system (IDS). Nevertheless, several current IIoT intrusion detection systems (IDS) suffer from issues such as an incomplete list of the network's attack kinds, an excessive number of features, models constructed using outdated datasets, and an absence of attention to the issue of imbalanced datasets. Our proposed intelligent recognition system can spot cyberattacks in IIoT-networks, which will help with the difficulties. Singular value decomposition (SVD) is employed by the suggested model to decrease data characteristics and enhance detection outcomes. If we want to keep our classifications from being biased due to over-fitting or under-fitting, we employ the SMOTE method. Data has been classified using a number of deep learning and machine learning techniques for both binary and multi-class purposes. We test the suggested intelligent model on the ToN_ IoT dataset to see how well it performs. With the suggested method, we were able to achieve a 99.98% accuracy rate and a lowered error rate of 0.016% for multi-class classification, and a 0.001 % reduction in the error rate for binary classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
玛琳卡迪马完成签到,获得积分10
2秒前
0s7完成签到,获得积分10
2秒前
4秒前
科研通AI6应助陈龙采纳,获得10
6秒前
6秒前
Ava应助水123采纳,获得10
6秒前
7秒前
彭于晏应助灵巧的珍采纳,获得10
8秒前
李健应助慈祥的傲安采纳,获得10
8秒前
9秒前
CCrain发布了新的文献求助200
10秒前
10秒前
987发布了新的文献求助10
11秒前
搜集达人应助han采纳,获得10
11秒前
13秒前
13秒前
13秒前
13秒前
浓眉拎包侍卫完成签到,获得积分20
14秒前
14秒前
15秒前
楠楠发布了新的文献求助10
16秒前
16秒前
backerly完成签到,获得积分10
16秒前
qi发布了新的文献求助10
16秒前
紧张的紫文完成签到,获得积分10
17秒前
Xiaomin0335完成签到,获得积分10
18秒前
18秒前
小喜发布了新的文献求助10
20秒前
852应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
20秒前
Owen应助科研通管家采纳,获得10
20秒前
宋温暖应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637107
求助须知:如何正确求助?哪些是违规求助? 4742700
关于积分的说明 14997714
捐赠科研通 4795341
什么是DOI,文献DOI怎么找? 2561924
邀请新用户注册赠送积分活动 1521429
关于科研通互助平台的介绍 1481505