An Adaptive Intrusion Detection System in Industrial Internet of Things(IIoT) using Deep Learning

工业互联网 计算机科学 入侵检测系统 物联网 互联网 深度学习 人工智能 计算机安全 万维网
作者
E. V. N. Jyothi,M. Kranthi,S. Sailaja,U Sesadri,Sridhar N. Koka,Pundru Chandra Shaker Reddy
标识
DOI:10.1109/istems60181.2024.10560245
摘要

The Industrial-Internet-of-Things (IIoT) is a product of the extensive use of the Internet-of-Things(IoT) in vital industries including manufacturing and industrial production. To improve industrial and manufacturing processes, the IIoT integrates sensors, actuators, and smart tools that can interact with each other. There are many advantages to IIoT for service providers and customers alike, but privacy and security are still major concerns. Cyberattacks in such a network have been reduced with the use of an intrusion detection system (IDS). Nevertheless, several current IIoT intrusion detection systems (IDS) suffer from issues such as an incomplete list of the network's attack kinds, an excessive number of features, models constructed using outdated datasets, and an absence of attention to the issue of imbalanced datasets. Our proposed intelligent recognition system can spot cyberattacks in IIoT-networks, which will help with the difficulties. Singular value decomposition (SVD) is employed by the suggested model to decrease data characteristics and enhance detection outcomes. If we want to keep our classifications from being biased due to over-fitting or under-fitting, we employ the SMOTE method. Data has been classified using a number of deep learning and machine learning techniques for both binary and multi-class purposes. We test the suggested intelligent model on the ToN_ IoT dataset to see how well it performs. With the suggested method, we were able to achieve a 99.98% accuracy rate and a lowered error rate of 0.016% for multi-class classification, and a 0.001 % reduction in the error rate for binary classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如常发布了新的文献求助10
刚刚
充电宝应助Rr采纳,获得10
刚刚
cyuan发布了新的文献求助10
刚刚
欣喜谷槐完成签到,获得积分10
刚刚
ccepted1122给ccepted1122的求助进行了留言
1秒前
1秒前
1秒前
啊炜发布了新的文献求助200
1秒前
董卓小蛮腰完成签到,获得积分10
1秒前
wwwww完成签到,获得积分10
2秒前
2秒前
mk发布了新的文献求助10
2秒前
2秒前
0range完成签到,获得积分10
2秒前
知秋发布了新的文献求助10
2秒前
mmmm完成签到,获得积分10
3秒前
GuanguanYaa发布了新的文献求助10
3秒前
hsy309完成签到,获得积分10
3秒前
NN发布了新的文献求助30
4秒前
嘲鸫完成签到,获得积分10
4秒前
刘胖胖发布了新的文献求助30
4秒前
4秒前
李晓彤发布了新的文献求助10
5秒前
5秒前
洁净的元蝶完成签到,获得积分10
5秒前
安静的映萱完成签到,获得积分10
5秒前
香蕉冰真发布了新的文献求助10
5秒前
pray完成签到,获得积分20
6秒前
照亮世界的ay完成签到,获得积分10
6秒前
城南以南发布了新的文献求助10
7秒前
13击发布了新的文献求助10
7秒前
7秒前
buno应助zyz1132采纳,获得10
7秒前
7秒前
共享精神应助MX001采纳,获得10
7秒前
8秒前
8秒前
怕孤单的嚣完成签到,获得积分10
8秒前
先生完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017