Classification and determination of sulfur content in crude oil samples by infrared spectrometry

偏最小二乘回归 线性判别分析 支持向量机 校准 线性回归 回归分析 衰减全反射 人工智能 数学 模式识别(心理学) 统计 计算机科学 化学 红外光谱学 有机化学
作者
Mahsa Mohammadi,Mohammadreza Khanmohammadi Khorrami,Hamid Vatanparast,Amirmohammad Karimi,Mina Sadrara
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:127: 104382-104382 被引量:7
标识
DOI:10.1016/j.infrared.2022.104382
摘要

Determining and classifying the sulfur content of crude oil has long been of great importance because of its adverse economic and environmental effects. In this study, the total sulfur concentration in crude oil samples was determined and classified using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and chemometric methods. The methods designed for the analysis of crude oils are rapid, economical and non-destructive in the production process of the petroleum industry. Two sets of 70 and 31 samples in regression models were considered for the calibration and prediction sets, respectively. The calibration models were developed using the partial least squares regression model (PLS-R) and support vector machine regression model (SVM-R). Different pre-processing methods were also evaluated for the development of models. The preprocessing methods based on baseline correction, standard normal variate (SNV) and the auto scale were selected for regression and classification models. The use of SVM-R as a non-linear regression provided a model with significantly better root mean square error of prediction (RMSEP) values than the PLS-R model as a linear model. The ATR-FTIR spectral data were also applied by supervised classification method using the partial least squares-discriminant analysis (PLS-DA) and support vector machine-discriminant analysis (SVM-DA) for classifying crude oils based on sulfur content. The samples were classified into two classes according to the sulfur content into sweet and sour crude oil. The result of the classification found an accuracy of 96% and a classification error of 0.0384 for the prediction set in the PLS-DA algorithm. The results indicated that ATR-FTIR spectroscopy associated with multivariate calibration and classification models is a rapid and reliable approach for parallel quantification and qualification of the sulfur content present in crude oils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助严俊东采纳,获得10
1秒前
徐行之完成签到,获得积分10
1秒前
火星上问柳完成签到,获得积分10
1秒前
Yin完成签到 ,获得积分10
2秒前
王帅发布了新的文献求助10
2秒前
糊涂的元珊完成签到 ,获得积分10
3秒前
zhubin完成签到,获得积分10
4秒前
顾矜应助cuily采纳,获得10
4秒前
wyq完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
顾矜应助司徒无剑采纳,获得10
7秒前
机灵的寻云完成签到 ,获得积分10
7秒前
调皮的啊啊啊完成签到 ,获得积分20
7秒前
8秒前
善学以致用应助mmssdd采纳,获得10
9秒前
Li发布了新的文献求助10
11秒前
11秒前
吲哚好呀发布了新的文献求助10
12秒前
悦耳的城完成签到,获得积分10
12秒前
Song发布了新的文献求助10
12秒前
13秒前
小马甲应助超帅的凌翠采纳,获得10
15秒前
15秒前
呆萌笑晴完成签到,获得积分10
15秒前
17秒前
fffffffq完成签到,获得积分10
18秒前
18秒前
20秒前
柚子关注了科研通微信公众号
20秒前
顾家老攻完成签到,获得积分10
21秒前
mmssdd发布了新的文献求助10
22秒前
共享精神应助smj采纳,获得10
22秒前
曾经的刺猬完成签到,获得积分10
24秒前
24秒前
charcy完成签到,获得积分10
25秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825