亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification and determination of sulfur content in crude oil samples by infrared spectrometry

偏最小二乘回归 线性判别分析 支持向量机 校准 线性回归 回归分析 衰减全反射 人工智能 数学 模式识别(心理学) 统计 计算机科学 化学 红外光谱学 有机化学
作者
Mahsa Mohammadi,Mohammadreza Khanmohammadi Khorrami,Hamid Vatanparast,Amirmohammad Karimi,Mina Sadrara
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:127: 104382-104382 被引量:7
标识
DOI:10.1016/j.infrared.2022.104382
摘要

Determining and classifying the sulfur content of crude oil has long been of great importance because of its adverse economic and environmental effects. In this study, the total sulfur concentration in crude oil samples was determined and classified using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and chemometric methods. The methods designed for the analysis of crude oils are rapid, economical and non-destructive in the production process of the petroleum industry. Two sets of 70 and 31 samples in regression models were considered for the calibration and prediction sets, respectively. The calibration models were developed using the partial least squares regression model (PLS-R) and support vector machine regression model (SVM-R). Different pre-processing methods were also evaluated for the development of models. The preprocessing methods based on baseline correction, standard normal variate (SNV) and the auto scale were selected for regression and classification models. The use of SVM-R as a non-linear regression provided a model with significantly better root mean square error of prediction (RMSEP) values than the PLS-R model as a linear model. The ATR-FTIR spectral data were also applied by supervised classification method using the partial least squares-discriminant analysis (PLS-DA) and support vector machine-discriminant analysis (SVM-DA) for classifying crude oils based on sulfur content. The samples were classified into two classes according to the sulfur content into sweet and sour crude oil. The result of the classification found an accuracy of 96% and a classification error of 0.0384 for the prediction set in the PLS-DA algorithm. The results indicated that ATR-FTIR spectroscopy associated with multivariate calibration and classification models is a rapid and reliable approach for parallel quantification and qualification of the sulfur content present in crude oils.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助甜蜜乐松采纳,获得10
刚刚
2秒前
从容海完成签到 ,获得积分10
4秒前
7秒前
7秒前
7秒前
ding应助科研通管家采纳,获得10
7秒前
8秒前
钮若翠完成签到,获得积分10
10秒前
钮若翠发布了新的文献求助10
12秒前
15秒前
19秒前
Pretrial完成签到 ,获得积分10
26秒前
奇怪完成签到,获得积分10
30秒前
Cpp完成签到 ,获得积分10
30秒前
32秒前
cui发布了新的文献求助10
35秒前
35秒前
土豪的摩托完成签到 ,获得积分10
36秒前
38秒前
Panther完成签到,获得积分10
39秒前
懒回顾发布了新的文献求助10
39秒前
何为完成签到 ,获得积分10
42秒前
解冰凡完成签到,获得积分10
44秒前
44秒前
懒回顾完成签到,获得积分10
44秒前
xiuxiu完成签到 ,获得积分0
46秒前
47秒前
刘忙完成签到,获得积分10
48秒前
cy0824完成签到 ,获得积分10
49秒前
zhaoyu完成签到 ,获得积分10
51秒前
瞿琼瑶完成签到,获得积分10
56秒前
One发布了新的文献求助10
56秒前
SciGPT应助超级的路人采纳,获得10
1分钟前
水牛完成签到,获得积分10
1分钟前
1分钟前
mathmotive完成签到,获得积分10
1分钟前
甜蜜乐松发布了新的文献求助10
1分钟前
月见完成签到 ,获得积分10
1分钟前
里里涵发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690909
关于积分的说明 14866536
捐赠科研通 4706185
什么是DOI,文献DOI怎么找? 2542718
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276