Classification and determination of sulfur content in crude oil samples by infrared spectrometry

偏最小二乘回归 线性判别分析 支持向量机 校准 线性回归 回归分析 衰减全反射 人工智能 数学 模式识别(心理学) 统计 计算机科学 化学 红外光谱学 有机化学
作者
Mahsa Mohammadi,Mohammadreza Khanmohammadi Khorrami,Hamid Vatanparast,Amirmohammad Karimi,Mina Sadrara
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:127: 104382-104382 被引量:7
标识
DOI:10.1016/j.infrared.2022.104382
摘要

Determining and classifying the sulfur content of crude oil has long been of great importance because of its adverse economic and environmental effects. In this study, the total sulfur concentration in crude oil samples was determined and classified using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and chemometric methods. The methods designed for the analysis of crude oils are rapid, economical and non-destructive in the production process of the petroleum industry. Two sets of 70 and 31 samples in regression models were considered for the calibration and prediction sets, respectively. The calibration models were developed using the partial least squares regression model (PLS-R) and support vector machine regression model (SVM-R). Different pre-processing methods were also evaluated for the development of models. The preprocessing methods based on baseline correction, standard normal variate (SNV) and the auto scale were selected for regression and classification models. The use of SVM-R as a non-linear regression provided a model with significantly better root mean square error of prediction (RMSEP) values than the PLS-R model as a linear model. The ATR-FTIR spectral data were also applied by supervised classification method using the partial least squares-discriminant analysis (PLS-DA) and support vector machine-discriminant analysis (SVM-DA) for classifying crude oils based on sulfur content. The samples were classified into two classes according to the sulfur content into sweet and sour crude oil. The result of the classification found an accuracy of 96% and a classification error of 0.0384 for the prediction set in the PLS-DA algorithm. The results indicated that ATR-FTIR spectroscopy associated with multivariate calibration and classification models is a rapid and reliable approach for parallel quantification and qualification of the sulfur content present in crude oils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助缓慢易云采纳,获得10
1秒前
xuxu发布了新的文献求助20
1秒前
1秒前
1秒前
侯美琪完成签到 ,获得积分10
1秒前
2秒前
2秒前
苹果发布了新的文献求助10
2秒前
12334发布了新的文献求助10
2秒前
ww发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
大个应助渊_采纳,获得10
3秒前
3秒前
RockRedfoo完成签到 ,获得积分10
3秒前
scvsdz发布了新的文献求助10
4秒前
4秒前
Scidog完成签到,获得积分0
4秒前
谨言完成签到 ,获得积分10
5秒前
飘逸鸵鸟发布了新的文献求助10
5秒前
mobo完成签到,获得积分10
6秒前
减肥为窈窕完成签到,获得积分10
6秒前
烩面大师发布了新的文献求助10
6秒前
文龙发布了新的文献求助10
6秒前
TuT发布了新的文献求助10
6秒前
毛子涵发布了新的文献求助10
7秒前
7秒前
FooLeup立仔完成签到,获得积分10
7秒前
hhhh完成签到,获得积分10
7秒前
nan完成签到,获得积分10
8秒前
jeffyoung发布了新的文献求助10
8秒前
9秒前
赵浩宇发布了新的文献求助10
9秒前
9秒前
周娅敏完成签到,获得积分10
10秒前
11秒前
2hi完成签到,获得积分10
11秒前
kang给kang的求助进行了留言
11秒前
阿瓦隆的蓝胖子完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582