Improving Robustness of Deep Reinforcement Learning Agents: Environment Attack based on the Critic Network

强化学习 计算机科学 对抗制 杠杆(统计) 稳健性(进化) 对手 人工智能 机器学习 任务(项目管理) 计算机安全 工程类 生物化学 基因 化学 系统工程
作者
Lucas Schott,Hatem Hajri,Sylvain Lamprier
标识
DOI:10.1109/ijcnn55064.2022.9892901
摘要

To improve robustness of deep reinforcement learning agents, a line of recent works focus on producing disturbances of the dynamics of the environment. Existing approaches of the literature to generate such disturbances are environment adversarial reinforcement learning methods. These methods set the problem as a two-player game between the protagonist agent, which learns to perform a task in an environment, and the adversary agent, which learns to disturb the dynamics of the considered environment to make the protagonist agent fail. Alternatively, we propose to build on gradient-based adversarial attacks, usually used for classification tasks for instance, that we apply on the critic network of the protagonist to identify efficient disturbances of the dynamics of the environment. Rather than training an adversary agent, which usually reveals as very complex and unstable, we leverage the knowledge of the critic network of the protagonist, to dynamically increase the complexity of the task at each step of the learning process. We show that our method, while being faster and lighter, leads to significantly better improvements in robustness of the policy than existing methods of the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hedy发布了新的文献求助10
1秒前
轻松盼雁完成签到,获得积分10
2秒前
shea发布了新的文献求助10
2秒前
3秒前
AYQ发布了新的文献求助10
6秒前
天天快乐应助夏冉采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
杨西西发布了新的文献求助10
10秒前
榴下晨光发布了新的文献求助10
11秒前
萝卜花1968发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
桉韵沁发布了新的文献求助10
12秒前
12秒前
13秒前
妖精很通完成签到,获得积分20
13秒前
刘十三完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
妖精很通发布了新的文献求助30
16秒前
AprilLeung完成签到 ,获得积分10
17秒前
orixero应助青柠采纳,获得10
17秒前
彩色的兔子完成签到,获得积分10
17秒前
18秒前
19秒前
偷喝汽水发布了新的文献求助10
19秒前
20秒前
柯一一完成签到,获得积分0
20秒前
Owen应助yhuang采纳,获得10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350