Prebiotic synthesis of α-amino acids and orotate from α-ketoacids potentiates transition to extant metabolic pathways

化学 氨基酸 碱基 益生元 代谢途径 谷氨酰胺转移酶 生物化学 立体化学 新陈代谢 谷氨酰胺 DNA
作者
Sunil Pulletikurti,Mahipal Yadav,Greg Springsteen,Ramanarayanan Krishnamurthy
出处
期刊:Nature Chemistry [Springer Nature]
卷期号:14 (10): 1142-1150 被引量:25
标识
DOI:10.1038/s41557-022-00999-w
摘要

The Strecker reaction of aldehydes is the pre-eminent pathway to explain the prebiotic origins of α-amino acids. However, biology employs transamination of α-ketoacids to synthesize amino acids which are then transformed to nucleobases, implying an evolutionary switch—abiotically or biotically—of a prebiotic pathway involving the Strecker reaction into today’s biosynthetic pathways. Here we show that α-ketoacids react with cyanide and ammonia sources to form the corresponding α-amino acids through the Bucherer–Bergs pathway. An efficient prebiotic transformation of oxaloacetate to aspartate via N-carbamoyl aspartate enables the simultaneous formation of dihydroorotate, paralleling the biochemical synthesis of orotate as the precursor to pyrimidine nucleobases. Glyoxylate forms both glycine and orotate and reacts with malonate and urea to form aspartate and dihydroorotate. These results, along with the previously demonstrated protometabolic analogues of the Krebs cycle, suggest that there can be a natural emergence of congruent forerunners of biological pathways with the potential for seamless transition from prebiotic chemistry to modern metabolism. The apparent disconnect between prebiotic aldehyde-based Strecker synthesis of amino acids and the α-ketoacid-based metabolism of extant biochemistry necessitates an evolutionary switch between these disparate chemistries. Now it has been shown that Bucherer–Bergs reactions of α-ketoacids produce α-amino acids and dihydroorotate, paralleling the biochemical synthesis of orotate and suggesting a more congruent evolutionary pathway from cyanide-based chemistries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一发布了新的文献求助10
刚刚
悦耳水之完成签到,获得积分10
2秒前
2秒前
ding应助灵巧荆采纳,获得10
3秒前
3秒前
绿色完成签到,获得积分10
3秒前
张无忌完成签到,获得积分10
4秒前
5秒前
5秒前
绿色发布了新的文献求助10
6秒前
7秒前
Eve完成签到,获得积分10
7秒前
有益发布了新的文献求助10
7秒前
啦啦啦完成签到,获得积分10
8秒前
cheng完成签到,获得积分10
8秒前
8秒前
thk1234完成签到,获得积分10
8秒前
9秒前
aura发布了新的文献求助10
9秒前
小刘应助cookie采纳,获得10
10秒前
11秒前
陌上花开完成签到,获得积分0
12秒前
12秒前
嘟嘟发布了新的文献求助10
12秒前
12秒前
13秒前
研一小刘完成签到,获得积分10
13秒前
善良的路灯完成签到,获得积分10
14秒前
uu发布了新的文献求助10
14秒前
15秒前
易烊千玺发布了新的文献求助10
16秒前
请叫我风吹麦浪应助HJJHJH采纳,获得20
16秒前
ZBN发布了新的文献求助10
16秒前
16秒前
善学以致用应助123采纳,获得10
18秒前
18秒前
19秒前
AFEUWOS01发布了新的文献求助30
19秒前
星辰大海应助Left采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794