Fast Gradient Descent for Surface Capture Via Differentiable Rendering

渲染(计算机图形) 计算机科学 交替帧渲染 实时渲染 平铺渲染 基于图像的建模与绘制 三维渲染 并行渲染 可微函数 梯度下降 计算机图形学(图像) 计算 人工智能 计算机视觉 算法 软件渲染 计算机图形学 数学 三维计算机图形学 人工神经网络 数学分析
作者
Briac Toussaint,Maxime Genisson,Jean-Sébastien Franco
标识
DOI:10.1109/3dv57658.2022.00049
摘要

Differential rendering has recently emerged as a powerful tool for image-based rendering or geometric reconstruction from multiple views, with very high quality. Up to now, such methods have been benchmarked on generic object databases and promisingly applied to some real data, but have yet to be applied to specific applications that may benefit. In this paper, we investigate how a differential rendering system can be crafted for raw multi-camera performance capture. We address several key issues in the way of practical usability and reproducibility, such as processing speed, explainability of the model, and general output model quality. This leads us to several contributions to the differential rendering framework. In particular we show that a unified view of differential rendering and classic optimization is possible, leading to a formulation and implementation where complete non-stochastic gradient steps can be analytically computed and the full perframe data stored in video memory, yielding a straight-forward and efficient implementation. We also use a sparse storage and coarse-to-fine scheme to achieve extremely high resolution with contained memory and computation time. We show that results rivaling or exceeding the quality of state of the art multi-view human surface capture methods are achievable in a fraction of the time, typically around a minute per frame.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CR7应助优美霸采纳,获得20
1秒前
顾矜应助宝时捷采纳,获得10
1秒前
Liufgui应助小静静采纳,获得50
2秒前
Rondab应助Salt采纳,获得10
2秒前
comic发布了新的文献求助10
4秒前
4秒前
mk91完成签到,获得积分10
5秒前
peace完成签到,获得积分10
5秒前
平常的心发布了新的文献求助10
6秒前
JohnsonTse发布了新的文献求助10
6秒前
深情安青应助棠真采纳,获得10
6秒前
melody完成签到,获得积分10
9秒前
mk91发布了新的文献求助10
9秒前
11秒前
sas完成签到,获得积分10
12秒前
科研小白_李完成签到,获得积分10
12秒前
13秒前
慕青应助孙彩瑛采纳,获得10
13秒前
姜紫文完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
槿裡完成签到 ,获得积分10
15秒前
16秒前
hai发布了新的文献求助30
18秒前
别来无恙发布了新的文献求助10
18秒前
邱丘邱发布了新的文献求助15
20秒前
windows发布了新的文献求助10
20秒前
邓秀君完成签到,获得积分10
21秒前
打打应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
Liufgui应助科研通管家采纳,获得20
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075