亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori

Tikhonov正则化 计算机科学 迭代重建 反问题 算法 人工智能 数学 数学分析
作者
Xiaolei Qu,Chujian Ren,Guo Yan,Dezhi Zheng,Wenzhong Tang,Shuai Wang,Hongxiang Lin,Jingya Zhang,Jue Jiang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:48 (10): 2079-2094 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2022.05.033
摘要

Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345发布了新的文献求助30
2秒前
科研通AI6.1应助XMH采纳,获得10
4秒前
25秒前
33秒前
浮游漂漂应助Karol采纳,获得10
36秒前
可爱花瓣完成签到,获得积分10
38秒前
40秒前
43秒前
47秒前
50秒前
53秒前
酷酷的大米完成签到,获得积分10
54秒前
Lebpom发布了新的文献求助10
55秒前
1分钟前
馒头发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
所所应助Lebpom采纳,获得30
1分钟前
快乐芷荷完成签到 ,获得积分10
1分钟前
CipherSage应助动听的又亦采纳,获得10
1分钟前
英俊的铭应助LucyMartinez采纳,获得10
1分钟前
敬业乐群完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
馒头完成签到,获得积分20
1分钟前
潇洒莞完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助能力越小责任越小采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
默默善愁发布了新的文献求助10
2分钟前
Victory完成签到,获得积分10
2分钟前
yara完成签到 ,获得积分10
2分钟前
2分钟前
宇称yu完成签到 ,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746620
求助须知:如何正确求助?哪些是违规求助? 5436547
关于积分的说明 15355678
捐赠科研通 4886645
什么是DOI,文献DOI怎么找? 2627324
邀请新用户注册赠送积分活动 1575809
关于科研通互助平台的介绍 1532565