Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori

Tikhonov正则化 计算机科学 迭代重建 反问题 算法 人工智能 数学 数学分析
作者
Xiaolei Qu,Chujian Ren,Guo Yan,Dezhi Zheng,Wenzhong Tang,Shuai Wang,Hongxiang Lin,Qian Zhang,Jue Jiang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:48 (10): 2079-2094 被引量:3
标识
DOI:10.1016/j.ultrasmedbio.2022.05.033
摘要

Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英俊的铭应助wangayting采纳,获得10
2秒前
可爱的函函应助冷静的豪采纳,获得10
4秒前
hhh发布了新的文献求助10
4秒前
5秒前
sdgasdca发布了新的文献求助30
6秒前
kingtongx完成签到,获得积分10
6秒前
8秒前
L龙完成签到,获得积分20
8秒前
11秒前
sybil发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
16秒前
11发布了新的文献求助10
16秒前
欣慰听白关注了科研通微信公众号
17秒前
hhh完成签到,获得积分10
17秒前
墨沁发布了新的文献求助10
17秒前
17秒前
18秒前
sybil完成签到,获得积分20
18秒前
L龙发布了新的文献求助10
19秒前
青阳发布了新的文献求助10
19秒前
一一发布了新的文献求助10
19秒前
小艾同学完成签到 ,获得积分20
19秒前
19秒前
小二郎应助科研通管家采纳,获得10
20秒前
20秒前
orixero应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
子车茗应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得30
20秒前
Hello应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
科研通AI2S应助姜姜姜采纳,获得10
20秒前
子车茗应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得20
20秒前
华仔应助科研通管家采纳,获得10
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141042
求助须知:如何正确求助?哪些是违规求助? 2791997
关于积分的说明 7801347
捐赠科研通 2448241
什么是DOI,文献DOI怎么找? 1302480
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226