Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori

Tikhonov正则化 计算机科学 迭代重建 反问题 算法 人工智能 数学 数学分析
作者
Xiaolei Qu,Chujian Ren,Guo Yan,Dezhi Zheng,Wenzhong Tang,Shuai Wang,Hongxiang Lin,Jingya Zhang,Jue Jiang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:48 (10): 2079-2094 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2022.05.033
摘要

Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘鹏宇发布了新的文献求助10
1秒前
zhangscience完成签到,获得积分10
1秒前
可爱的函函应助若狂采纳,获得10
2秒前
小蘑菇应助阿美采纳,获得30
2秒前
科研通AI2S应助机智小虾米采纳,获得10
3秒前
充电宝应助Xx.采纳,获得10
4秒前
zhangscience发布了新的文献求助10
5秒前
深情安青应助大方嵩采纳,获得10
6秒前
英俊的铭应助大方嵩采纳,获得10
6秒前
李还好完成签到,获得积分10
7秒前
满意的柏柳完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
buno应助88采纳,获得10
10秒前
11秒前
三千世界完成签到,获得积分10
11秒前
11秒前
愉快的访旋完成签到,获得积分10
12秒前
Alpha完成签到,获得积分10
13秒前
大大发布了新的文献求助30
13秒前
翠翠发布了新的文献求助10
14秒前
半山发布了新的文献求助10
15秒前
15秒前
天天快乐应助CO2采纳,获得10
15秒前
隐形曼青应助junzilan采纳,获得10
16秒前
Dksido发布了新的文献求助10
16秒前
17秒前
思源应助卓哥采纳,获得10
17秒前
mysci完成签到,获得积分10
20秒前
21秒前
Quzhengkai发布了新的文献求助10
22秒前
22秒前
23秒前
落寞晓灵完成签到,获得积分10
23秒前
ORAzzz应助翠翠采纳,获得20
24秒前
zoe完成签到,获得积分10
24秒前
习习应助学术小白采纳,获得10
24秒前
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808