已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori

Tikhonov正则化 计算机科学 迭代重建 反问题 算法 人工智能 数学 数学分析
作者
Xiaolei Qu,Chujian Ren,Guo Yan,Dezhi Zheng,Wenzhong Tang,Shuai Wang,Hongxiang Lin,Jingya Zhang,Jue Jiang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:48 (10): 2079-2094 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2022.05.033
摘要

Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞逝的快乐时光完成签到 ,获得积分10
刚刚
1秒前
NexusExplorer应助单纯的柚子采纳,获得10
2秒前
3秒前
丫丫完成签到,获得积分10
3秒前
丹麦曲奇发布了新的文献求助30
3秒前
3秒前
4秒前
5秒前
5秒前
情怀应助TYolo采纳,获得10
5秒前
5秒前
薛薛完成签到,获得积分20
6秒前
Yi1完成签到,获得积分10
7秒前
西西完成签到 ,获得积分10
7秒前
浮游应助懒羊羊大王采纳,获得10
8秒前
CXS发布了新的文献求助10
8秒前
小鱼完成签到,获得积分10
9秒前
10秒前
乐橙发布了新的文献求助10
10秒前
思源应助鲈鱼采纳,获得10
10秒前
bkagyin应助悦耳的夜云采纳,获得10
10秒前
11秒前
科研通AI5应助柚子采纳,获得10
11秒前
12秒前
活力的幻悲完成签到 ,获得积分10
12秒前
干净夏天发布了新的文献求助10
12秒前
13秒前
烟花应助pizwijrit采纳,获得10
14秒前
yx完成签到,获得积分20
16秒前
xiao金完成签到,获得积分10
17秒前
17秒前
18秒前
yiyi完成签到 ,获得积分10
22秒前
乐橙完成签到,获得积分10
23秒前
24秒前
852应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
严逍遥应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197046
求助须知:如何正确求助?哪些是违规求助? 4378441
关于积分的说明 13636319
捐赠科研通 4234134
什么是DOI,文献DOI怎么找? 2322555
邀请新用户注册赠送积分活动 1320688
关于科研通互助平台的介绍 1271277