已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori

Tikhonov正则化 计算机科学 迭代重建 反问题 算法 人工智能 数学 数学分析
作者
Xiaolei Qu,Chujian Ren,Guo Yan,Dezhi Zheng,Wenzhong Tang,Shuai Wang,Hongxiang Lin,Jingya Zhang,Jue Jiang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:48 (10): 2079-2094 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2022.05.033
摘要

Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助Su采纳,获得10
10秒前
百宝驳回了Jasper应助
12秒前
eriphin完成签到,获得积分10
12秒前
打打应助渴望者采纳,获得10
15秒前
畅快的发箍完成签到,获得积分10
15秒前
姜姗完成签到 ,获得积分10
17秒前
lzy完成签到,获得积分10
19秒前
19秒前
20秒前
在巨人的肩膀上眺望远方完成签到,获得积分10
27秒前
amanda完成签到,获得积分10
29秒前
芒果完成签到 ,获得积分10
32秒前
32秒前
34秒前
34秒前
yyds应助科研通管家采纳,获得160
37秒前
顾矜应助科研通管家采纳,获得10
37秒前
爆米花应助科研通管家采纳,获得10
38秒前
反恐分子应助科研通管家采纳,获得10
38秒前
情怀应助科研通管家采纳,获得10
38秒前
38秒前
呼延水云发布了新的文献求助10
39秒前
41秒前
Broadway Zhang完成签到,获得积分10
41秒前
兼听则明应助cai采纳,获得50
42秒前
乐空思应助淡定秀发采纳,获得20
44秒前
情怀应助不爱胡萝卜采纳,获得10
46秒前
爱吃橙子完成签到 ,获得积分10
48秒前
111完成签到 ,获得积分10
49秒前
49秒前
大学生完成签到 ,获得积分10
50秒前
酷波er应助SCIDING采纳,获得10
53秒前
55秒前
百宝发布了新的文献求助10
56秒前
淡定秀发完成签到,获得积分10
57秒前
wanci应助amanda采纳,获得30
1分钟前
1分钟前
美丽的若云完成签到 ,获得积分10
1分钟前
土豆你个西红柿完成签到 ,获得积分10
1分钟前
无尾熊完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606500
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866511
捐赠科研通 4706081
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276