Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori

Tikhonov正则化 计算机科学 迭代重建 反问题 算法 人工智能 数学 数学分析
作者
Xiaolei Qu,Chujian Ren,Guo Yan,Dezhi Zheng,Wenzhong Tang,Shuai Wang,Hongxiang Lin,Jingya Zhang,Jue Jiang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:48 (10): 2079-2094 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2022.05.033
摘要

Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sameen发布了新的文献求助10
1秒前
棉花糖吖吖吖完成签到,获得积分10
2秒前
2秒前
2秒前
ability发布了新的文献求助10
3秒前
4秒前
5秒前
yar应助科研人采纳,获得10
6秒前
Siso发布了新的文献求助10
6秒前
张aa发布了新的文献求助20
8秒前
lili发布了新的文献求助10
8秒前
honey发布了新的文献求助10
8秒前
jiang完成签到 ,获得积分10
8秒前
9秒前
传奇3应助loading采纳,获得10
9秒前
Leokin完成签到,获得积分10
10秒前
CodeCraft应助收手吧大哥采纳,获得50
12秒前
Ren应助zz采纳,获得10
12秒前
13秒前
lyg616358001发布了新的文献求助10
14秒前
14秒前
14秒前
16秒前
16秒前
李健的小迷弟应助无误采纳,获得10
17秒前
好柿花生发布了新的文献求助10
18秒前
18秒前
19秒前
zhangyu应助勤恳立轩采纳,获得10
19秒前
19秒前
Binbin发布了新的文献求助10
19秒前
英俊的丹亦完成签到,获得积分10
19秒前
zhuling发布了新的文献求助10
20秒前
一介书生发布了新的文献求助10
20秒前
21秒前
科研通AI2S应助zhouxuefeng采纳,获得10
21秒前
21秒前
毓雅完成签到,获得积分10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014