Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet

人工智能 豪斯多夫距离 计算机科学 分割 正电子发射断层摄影术 Sørensen–骰子系数 深度学习 放射治疗 核医学 计算机视觉 模式识别(心理学) 图像分割 医学 放射科
作者
Yaoting Yue,Nan Li,Gaobo Zhang,Zhibin Zhu,Xin Liu,Shaoli Song,Dean Ta
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107266-107266 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107266
摘要

For esophageal squamous cell carcinoma, radiotherapy is one of the primary treatments. During the planning before radiotherapy, the intractable task is to precisely delineate the esophageal gross tumor volume (GTV) on medical images. In current clinical practice, the manual delineation suffers from high intra- and inter-rater variability, while also exhausting the oncologists on a treadmill. There is an urgent demand for effective computer-aided automatic segmentation methods. To this end, we designed a novel deep network, dubbed as GloD-LoATUNet. GloD-LoATUNet follows the effective U-shape structure. On the contractile path, the global deformable dense attention transformer (GloDAT), local attention transformer (LoAT), and convolution blocks are integrated to model long-range dependencies and localized information. On the center bridge and the expanding path, convolution blocks are adopted to upsample the extracted representations for pixel-wise semantic prediction. Between the peer-to-peer counterparts, enhanced skip connections are built to compensate for the lost spatial information and dependencies. By exploiting complementary strengths of the GloDAT, LoAT, and convolution, GloD-LoATUNet has remarkable representation learning capabilities, performing well in the prediction of the small and variable esophageal GTV. The proposed approach was validated in the clinical positron emission tomography/computed tomography (PET/CT) cohort. For 4 different data partitions, we report the Dice similarity coefficient (DSC), Hausdorff distance (HD), and Mean surface distance (MSD) as: 0.83±0.13, 4.88±9.16 mm, and 1.40±4.11 mm; 0.84±0.12, 6.89±12.04 mm, and 1.18±3.02 mm; 0.84±0.13, 3.89±7.64 mm, and 1.28±3.68 mm; 0.86±0.09, 3.71±4.79 mm, and 0.90±0.37 mm; respectively. The predicted contours present a desirable consistency with the ground truth. The inspiring results confirm the accuracy and generalizability of the proposed model, demonstrating the potential for automatic segmentation of esophageal GTV in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼啤酒发布了新的文献求助10
1秒前
清脆的大船完成签到,获得积分10
2秒前
VPN不好用完成签到,获得积分10
4秒前
细腻新筠完成签到,获得积分10
5秒前
饱满的百招完成签到 ,获得积分10
7秒前
郝宝真发布了新的文献求助10
9秒前
忧虑的钻石应助松谦采纳,获得30
13秒前
昂口3完成签到 ,获得积分10
15秒前
科研通AI2S应助rebeycca采纳,获得10
15秒前
15秒前
快乐的雨竹完成签到,获得积分10
16秒前
Miss完成签到,获得积分10
16秒前
卖粥的果完成签到,获得积分10
17秒前
wu完成签到,获得积分10
17秒前
18秒前
21秒前
Dr.Tang完成签到 ,获得积分10
23秒前
23秒前
24秒前
zmk完成签到,获得积分10
25秒前
25秒前
单薄纸飞机完成签到,获得积分10
27秒前
zmk发布了新的文献求助10
28秒前
Allen发布了新的文献求助10
33秒前
pluto应助猜猜我是谁采纳,获得10
33秒前
重要白山完成签到 ,获得积分20
39秒前
nanda完成签到,获得积分10
40秒前
恰恰完成签到,获得积分10
40秒前
Li完成签到,获得积分10
41秒前
42秒前
猜猜我是谁完成签到,获得积分10
43秒前
InfoNinja应助科研通管家采纳,获得10
47秒前
FashionBoy应助科研通管家采纳,获得30
47秒前
bkagyin应助科研通管家采纳,获得10
47秒前
CodeCraft应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得30
47秒前
深情安青应助科研通管家采纳,获得10
47秒前
SciGPT应助科研通管家采纳,获得10
47秒前
HR112应助科研通管家采纳,获得10
47秒前
47秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388