Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet

人工智能 豪斯多夫距离 计算机科学 分割 正电子发射断层摄影术 Sørensen–骰子系数 深度学习 放射治疗 核医学 计算机视觉 模式识别(心理学) 图像分割 医学 放射科
作者
Yaoting Yue,Nan Li,Gaobo Zhang,Zhibin Zhu,Xin Liu,Shaoli Song,Dean Ta
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107266-107266 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107266
摘要

For esophageal squamous cell carcinoma, radiotherapy is one of the primary treatments. During the planning before radiotherapy, the intractable task is to precisely delineate the esophageal gross tumor volume (GTV) on medical images. In current clinical practice, the manual delineation suffers from high intra- and inter-rater variability, while also exhausting the oncologists on a treadmill. There is an urgent demand for effective computer-aided automatic segmentation methods. To this end, we designed a novel deep network, dubbed as GloD-LoATUNet. GloD-LoATUNet follows the effective U-shape structure. On the contractile path, the global deformable dense attention transformer (GloDAT), local attention transformer (LoAT), and convolution blocks are integrated to model long-range dependencies and localized information. On the center bridge and the expanding path, convolution blocks are adopted to upsample the extracted representations for pixel-wise semantic prediction. Between the peer-to-peer counterparts, enhanced skip connections are built to compensate for the lost spatial information and dependencies. By exploiting complementary strengths of the GloDAT, LoAT, and convolution, GloD-LoATUNet has remarkable representation learning capabilities, performing well in the prediction of the small and variable esophageal GTV. The proposed approach was validated in the clinical positron emission tomography/computed tomography (PET/CT) cohort. For 4 different data partitions, we report the Dice similarity coefficient (DSC), Hausdorff distance (HD), and Mean surface distance (MSD) as: 0.83±0.13, 4.88±9.16 mm, and 1.40±4.11 mm; 0.84±0.12, 6.89±12.04 mm, and 1.18±3.02 mm; 0.84±0.13, 3.89±7.64 mm, and 1.28±3.68 mm; 0.86±0.09, 3.71±4.79 mm, and 0.90±0.37 mm; respectively. The predicted contours present a desirable consistency with the ground truth. The inspiring results confirm the accuracy and generalizability of the proposed model, demonstrating the potential for automatic segmentation of esophageal GTV in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助林洛沁采纳,获得10
刚刚
2秒前
认真迎夏发布了新的文献求助10
2秒前
bkagyin应助超级冬瓜采纳,获得10
2秒前
星辰大海应助哇咔咔采纳,获得30
3秒前
3秒前
认真迎夏发布了新的文献求助10
3秒前
赘婿应助cc采纳,获得10
4秒前
yu完成签到,获得积分10
4秒前
shinn发布了新的文献求助10
5秒前
乔an完成签到,获得积分10
6秒前
7秒前
7秒前
852应助等待的道消采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
mayer完成签到,获得积分20
10秒前
10秒前
11秒前
CipherSage应助jenny采纳,获得10
11秒前
搜集达人应助silong采纳,获得10
11秒前
日落发布了新的文献求助10
12秒前
jingzy完成签到,获得积分10
12秒前
13秒前
13秒前
CodeCraft应助小嚣张采纳,获得10
14秒前
Ava应助粗犷的书包采纳,获得10
14秒前
梦红尘发布了新的文献求助10
14秒前
背后雪枫完成签到,获得积分10
14秒前
15秒前
Jasper应助自觉寒梦采纳,获得10
16秒前
Cherry完成签到 ,获得积分10
16秒前
zho发布了新的文献求助10
16秒前
XinSha完成签到,获得积分20
17秒前
18秒前
韩俊峰完成签到,获得积分10
18秒前
面包超人关注了科研通微信公众号
18秒前
19秒前
李李发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483