已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet

人工智能 豪斯多夫距离 计算机科学 分割 正电子发射断层摄影术 Sørensen–骰子系数 深度学习 放射治疗 核医学 计算机视觉 模式识别(心理学) 图像分割 医学 放射科
作者
Yaoting Yue,Nan Li,Gaobo Zhang,Zhibin Zhu,Xin Liu,Shaoli Song,Dean Ta
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107266-107266 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107266
摘要

For esophageal squamous cell carcinoma, radiotherapy is one of the primary treatments. During the planning before radiotherapy, the intractable task is to precisely delineate the esophageal gross tumor volume (GTV) on medical images. In current clinical practice, the manual delineation suffers from high intra- and inter-rater variability, while also exhausting the oncologists on a treadmill. There is an urgent demand for effective computer-aided automatic segmentation methods. To this end, we designed a novel deep network, dubbed as GloD-LoATUNet. GloD-LoATUNet follows the effective U-shape structure. On the contractile path, the global deformable dense attention transformer (GloDAT), local attention transformer (LoAT), and convolution blocks are integrated to model long-range dependencies and localized information. On the center bridge and the expanding path, convolution blocks are adopted to upsample the extracted representations for pixel-wise semantic prediction. Between the peer-to-peer counterparts, enhanced skip connections are built to compensate for the lost spatial information and dependencies. By exploiting complementary strengths of the GloDAT, LoAT, and convolution, GloD-LoATUNet has remarkable representation learning capabilities, performing well in the prediction of the small and variable esophageal GTV. The proposed approach was validated in the clinical positron emission tomography/computed tomography (PET/CT) cohort. For 4 different data partitions, we report the Dice similarity coefficient (DSC), Hausdorff distance (HD), and Mean surface distance (MSD) as: 0.83±0.13, 4.88±9.16 mm, and 1.40±4.11 mm; 0.84±0.12, 6.89±12.04 mm, and 1.18±3.02 mm; 0.84±0.13, 3.89±7.64 mm, and 1.28±3.68 mm; 0.86±0.09, 3.71±4.79 mm, and 0.90±0.37 mm; respectively. The predicted contours present a desirable consistency with the ground truth. The inspiring results confirm the accuracy and generalizability of the proposed model, demonstrating the potential for automatic segmentation of esophageal GTV in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr发布了新的文献求助10
1秒前
DAYDAY完成签到 ,获得积分10
1秒前
木小叶完成签到,获得积分10
1秒前
mjq发布了新的文献求助10
1秒前
安详向薇完成签到,获得积分10
1秒前
科目三应助zhb1998采纳,获得10
1秒前
柳易槐发布了新的文献求助30
2秒前
今后应助TIPHA采纳,获得10
5秒前
7秒前
张欢完成签到,获得积分10
8秒前
麦芽发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
14秒前
zhb1998发布了新的文献求助10
14秒前
木小叶发布了新的文献求助10
15秒前
贝妮戴塔发布了新的文献求助20
16秒前
LLL发布了新的文献求助10
16秒前
star应助小么小采纳,获得10
16秒前
丘比特应助夏依瑶采纳,获得30
17秒前
乙酰水杨酸完成签到,获得积分10
18秒前
TIPHA发布了新的文献求助10
20秒前
21秒前
24秒前
蒋蒋蒋蒋发布了新的文献求助10
24秒前
幸福的含灵完成签到,获得积分10
24秒前
26秒前
深情安青应助陈益凡采纳,获得10
26秒前
26秒前
linda完成签到,获得积分10
26秒前
桐桐应助完美外绣采纳,获得10
27秒前
27秒前
充电宝应助TIPHA采纳,获得10
27秒前
大个应助XIAO QIANG采纳,获得30
27秒前
29秒前
30秒前
万能图书馆应助烟消云散采纳,获得10
31秒前
linda发布了新的文献求助10
31秒前
青年才俊发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090076
求助须知:如何正确求助?哪些是违规求助? 4304701
关于积分的说明 13414655
捐赠科研通 4130369
什么是DOI,文献DOI怎么找? 2262239
邀请新用户注册赠送积分活动 1266168
关于科研通互助平台的介绍 1200858