Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet

人工智能 豪斯多夫距离 计算机科学 分割 正电子发射断层摄影术 Sørensen–骰子系数 深度学习 放射治疗 核医学 计算机视觉 模式识别(心理学) 图像分割 医学 放射科
作者
Yaoting Yue,Nan Li,Gaobo Zhang,Zhibin Zhu,Xin Liu,Shaoli Song,Dean Ta
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107266-107266 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107266
摘要

For esophageal squamous cell carcinoma, radiotherapy is one of the primary treatments. During the planning before radiotherapy, the intractable task is to precisely delineate the esophageal gross tumor volume (GTV) on medical images. In current clinical practice, the manual delineation suffers from high intra- and inter-rater variability, while also exhausting the oncologists on a treadmill. There is an urgent demand for effective computer-aided automatic segmentation methods. To this end, we designed a novel deep network, dubbed as GloD-LoATUNet. GloD-LoATUNet follows the effective U-shape structure. On the contractile path, the global deformable dense attention transformer (GloDAT), local attention transformer (LoAT), and convolution blocks are integrated to model long-range dependencies and localized information. On the center bridge and the expanding path, convolution blocks are adopted to upsample the extracted representations for pixel-wise semantic prediction. Between the peer-to-peer counterparts, enhanced skip connections are built to compensate for the lost spatial information and dependencies. By exploiting complementary strengths of the GloDAT, LoAT, and convolution, GloD-LoATUNet has remarkable representation learning capabilities, performing well in the prediction of the small and variable esophageal GTV. The proposed approach was validated in the clinical positron emission tomography/computed tomography (PET/CT) cohort. For 4 different data partitions, we report the Dice similarity coefficient (DSC), Hausdorff distance (HD), and Mean surface distance (MSD) as: 0.83±0.13, 4.88±9.16 mm, and 1.40±4.11 mm; 0.84±0.12, 6.89±12.04 mm, and 1.18±3.02 mm; 0.84±0.13, 3.89±7.64 mm, and 1.28±3.68 mm; 0.86±0.09, 3.71±4.79 mm, and 0.90±0.37 mm; respectively. The predicted contours present a desirable consistency with the ground truth. The inspiring results confirm the accuracy and generalizability of the proposed model, demonstrating the potential for automatic segmentation of esophageal GTV in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Lucas发布了新的文献求助20
刚刚
Do发布了新的文献求助10
1秒前
传奇3应助wananan采纳,获得10
2秒前
3秒前
可问春风完成签到,获得积分10
3秒前
3秒前
impala完成签到,获得积分10
3秒前
4秒前
Mississippiecho完成签到,获得积分10
4秒前
卜乌完成签到,获得积分10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
不懈奋进应助科研通管家采纳,获得30
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
希望天下0贩的0应助毛毛采纳,获得10
5秒前
蜘猪侠zx应助科研通管家采纳,获得10
5秒前
pluto应助毛毛采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
March应助毛毛采纳,获得10
5秒前
CAOHOU应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
李健的粉丝团团长应助HHHH采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
maomao完成签到,获得积分10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
chao发布了新的文献求助10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
X欣应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助cqy采纳,获得10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060