Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet

人工智能 豪斯多夫距离 计算机科学 分割 正电子发射断层摄影术 Sørensen–骰子系数 深度学习 放射治疗 核医学 计算机视觉 模式识别(心理学) 图像分割 医学 放射科
作者
Yaoting Yue,Nan Li,Gaobo Zhang,Zhibin Zhu,Xin Liu,Shaoli Song,Dean Ta
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107266-107266 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107266
摘要

For esophageal squamous cell carcinoma, radiotherapy is one of the primary treatments. During the planning before radiotherapy, the intractable task is to precisely delineate the esophageal gross tumor volume (GTV) on medical images. In current clinical practice, the manual delineation suffers from high intra- and inter-rater variability, while also exhausting the oncologists on a treadmill. There is an urgent demand for effective computer-aided automatic segmentation methods. To this end, we designed a novel deep network, dubbed as GloD-LoATUNet. GloD-LoATUNet follows the effective U-shape structure. On the contractile path, the global deformable dense attention transformer (GloDAT), local attention transformer (LoAT), and convolution blocks are integrated to model long-range dependencies and localized information. On the center bridge and the expanding path, convolution blocks are adopted to upsample the extracted representations for pixel-wise semantic prediction. Between the peer-to-peer counterparts, enhanced skip connections are built to compensate for the lost spatial information and dependencies. By exploiting complementary strengths of the GloDAT, LoAT, and convolution, GloD-LoATUNet has remarkable representation learning capabilities, performing well in the prediction of the small and variable esophageal GTV. The proposed approach was validated in the clinical positron emission tomography/computed tomography (PET/CT) cohort. For 4 different data partitions, we report the Dice similarity coefficient (DSC), Hausdorff distance (HD), and Mean surface distance (MSD) as: 0.83±0.13, 4.88±9.16 mm, and 1.40±4.11 mm; 0.84±0.12, 6.89±12.04 mm, and 1.18±3.02 mm; 0.84±0.13, 3.89±7.64 mm, and 1.28±3.68 mm; 0.86±0.09, 3.71±4.79 mm, and 0.90±0.37 mm; respectively. The predicted contours present a desirable consistency with the ground truth. The inspiring results confirm the accuracy and generalizability of the proposed model, demonstrating the potential for automatic segmentation of esophageal GTV in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzj完成签到 ,获得积分20
2秒前
朴实的亦云完成签到 ,获得积分10
3秒前
li完成签到 ,获得积分10
4秒前
keroro完成签到,获得积分10
5秒前
6秒前
科研通AI5应助堂风采纳,获得10
7秒前
bxw发布了新的文献求助20
7秒前
GR完成签到 ,获得积分10
9秒前
9秒前
风淡了完成签到,获得积分10
11秒前
fenghuo发布了新的文献求助30
12秒前
13秒前
15秒前
踏实无敌应助小高采纳,获得20
16秒前
勤劳雪糕关注了科研通微信公众号
17秒前
毛头侠发布了新的文献求助10
18秒前
树上的猫头鹰完成签到,获得积分10
19秒前
Echo1128完成签到 ,获得积分10
21秒前
21秒前
洪山老狗完成签到,获得积分10
22秒前
czx完成签到,获得积分10
22秒前
24秒前
明亮代丝完成签到,获得积分10
25秒前
25秒前
拾光完成签到,获得积分10
25秒前
26秒前
迷人嫣然完成签到,获得积分10
26秒前
12305014077发布了新的文献求助10
27秒前
思源应助西一阿铭采纳,获得10
27秒前
瓦西姆关注了科研通微信公众号
28秒前
惊天大幂幂完成签到,获得积分10
28秒前
豆子完成签到,获得积分10
28秒前
guoxuefan完成签到,获得积分10
29秒前
zzjjyy完成签到,获得积分10
30秒前
31秒前
崔晗发布了新的文献求助10
31秒前
堂风发布了新的文献求助10
32秒前
彭于晏应助果糖不加糖采纳,获得30
33秒前
FF发布了新的文献求助10
35秒前
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736852
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10020999
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749698