电催化剂
材料科学
电池(电)
催化作用
化学工程
热解
碳纤维
金属
氧气
限制电流
纳米技术
电化学
电极
复合数
物理化学
化学
复合材料
功率(物理)
热力学
有机化学
冶金
工程类
物理
作者
Mengtian Zhang,Hao Li,Junxiang Chen,Fei‐Xiang Ma,Liang Zhen,Zhenhai Wen,Cheng‐Yan Xu
标识
DOI:10.1002/adfm.202209726
摘要
Abstract The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C 3 N 4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co 40 SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential ( E 1/2 = 0.890 V) and robust long‐term stability. Moreover, the Co 40 SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm −2 ) and strong cycling stability, demonstrating great potential for energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI