清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Scalable Digital Twin Framework Based on a Novel Adaptive Ensemble Surrogate Model

可扩展性 计算机科学 替代模型 节点(物理) 钥匙(锁) 集合预报 数学优化 分布式计算 人工智能 数据挖掘 机器学习 工程类 数学 计算机安全 结构工程 数据库
作者
Xiaonan Lai,Xiwang He,Yong Pang,Fan Zhang,Dongcai Zhou,Sun We,Xueguan Song
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:145 (2) 被引量:10
标识
DOI:10.1115/1.4056077
摘要

Abstract The concept of digital twins is to have a digital model that can replicate the behavior of a physical asset in real time. However, using digital models to reflect the structural performance of physical assets usually faces high computational costs, which makes it difficult for the model to satisfy real-time requirements. As a technique to replace expensive simulations, surrogate models have great potential to solve this problem. In practice, however, the optimal individual surrogate model (ISM) applicable to a given problem usually changes as factors change, and this can be mitigated by integrating multiple ISMs. Therefore, this paper proposes a scalable digital twin framework based on a novel adaptive ensemble surrogate model. This ensemble not only provides robust approximation but also reduces the additional cost brought by the ensemble by reducing the number of ISMs participating in the ensemble through multicriterion model screening. Moreover, based on the characteristics of the finite element method, a node rearrangement method, which provides scalability for the construction of a digital model, is proposed. That is, the distribution and number of nodes can be customized to not only decrease the computational cost by reducing nodes but also obtain the information at key positions by customizing the locations of nodes. Numerical experiments are employed to verify the performance of the proposed ensemble and node rearrangement method. A telehandler is used as an example to build a scalable digital twin, which proves the feasibility and effectiveness of the framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
春风沂水发布了新的文献求助10
6秒前
春风沂水完成签到,获得积分10
15秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
Criminology34应助科研通管家采纳,获得10
34秒前
活力的珊完成签到 ,获得积分10
45秒前
1分钟前
yhw发布了新的文献求助10
1分钟前
芽衣完成签到 ,获得积分10
1分钟前
Dryang完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
YTY完成签到,获得积分10
1分钟前
2分钟前
Vintoe完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34举报苗雅宁求助涉嫌违规
2分钟前
2分钟前
科研通AI6应助雪白的青柏采纳,获得10
2分钟前
史蒂夫完成签到,获得积分10
2分钟前
共享精神应助高文采纳,获得10
3分钟前
一天完成签到 ,获得积分10
3分钟前
小鱼女侠完成签到 ,获得积分10
3分钟前
xiaowangwang完成签到 ,获得积分10
3分钟前
3分钟前
高文发布了新的文献求助10
3分钟前
小西完成签到 ,获得积分0
3分钟前
nkr完成签到,获得积分10
3分钟前
科研通AI6应助CC采纳,获得10
3分钟前
高文完成签到,获得积分10
3分钟前
3分钟前
gwbk完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651171
求助须知:如何正确求助?哪些是违规求助? 4783722
关于积分的说明 15053252
捐赠科研通 4809900
什么是DOI,文献DOI怎么找? 2572756
邀请新用户注册赠送积分活动 1528714
关于科研通互助平台的介绍 1487703