亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Scalable Digital Twin Framework Based on a Novel Adaptive Ensemble Surrogate Model

可扩展性 计算机科学 替代模型 节点(物理) 钥匙(锁) 集合预报 数学优化 分布式计算 人工智能 数据挖掘 机器学习 工程类 数学 计算机安全 结构工程 数据库
作者
Xiaonan Lai,Xiwang He,Yong Pang,Fan Zhang,Dongcai Zhou,Sun We,Xueguan Song
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:145 (2) 被引量:10
标识
DOI:10.1115/1.4056077
摘要

Abstract The concept of digital twins is to have a digital model that can replicate the behavior of a physical asset in real time. However, using digital models to reflect the structural performance of physical assets usually faces high computational costs, which makes it difficult for the model to satisfy real-time requirements. As a technique to replace expensive simulations, surrogate models have great potential to solve this problem. In practice, however, the optimal individual surrogate model (ISM) applicable to a given problem usually changes as factors change, and this can be mitigated by integrating multiple ISMs. Therefore, this paper proposes a scalable digital twin framework based on a novel adaptive ensemble surrogate model. This ensemble not only provides robust approximation but also reduces the additional cost brought by the ensemble by reducing the number of ISMs participating in the ensemble through multicriterion model screening. Moreover, based on the characteristics of the finite element method, a node rearrangement method, which provides scalability for the construction of a digital model, is proposed. That is, the distribution and number of nodes can be customized to not only decrease the computational cost by reducing nodes but also obtain the information at key positions by customizing the locations of nodes. Numerical experiments are employed to verify the performance of the proposed ensemble and node rearrangement method. A telehandler is used as an example to build a scalable digital twin, which proves the feasibility and effectiveness of the framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mine完成签到,获得积分10
3秒前
在水一方应助Mine采纳,获得10
6秒前
Hello应助leanne采纳,获得10
9秒前
谷千千完成签到,获得积分20
20秒前
29秒前
30秒前
32秒前
搜集达人应助俏皮绿蓉采纳,获得10
37秒前
46秒前
leanne发布了新的文献求助10
50秒前
灰色白面鸮完成签到,获得积分10
50秒前
52秒前
东郭凝蝶完成签到 ,获得积分10
54秒前
1分钟前
勇敢牛牛完成签到 ,获得积分10
1分钟前
1分钟前
DoctorG发布了新的文献求助10
1分钟前
1分钟前
我是老大应助DoctorG采纳,获得10
1分钟前
yaling完成签到,获得积分10
1分钟前
1分钟前
白切鸡大王完成签到,获得积分10
1分钟前
1分钟前
向莉完成签到 ,获得积分10
1分钟前
norman完成签到,获得积分20
1分钟前
yaling发布了新的文献求助10
1分钟前
调皮的浩天完成签到,获得积分20
1分钟前
俏皮绿蓉发布了新的文献求助10
1分钟前
orixero应助文静的听荷采纳,获得10
1分钟前
1分钟前
领导范儿应助白切鸡大王采纳,获得10
1分钟前
OmmeHabiba完成签到,获得积分10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
俏皮绿蓉完成签到,获得积分10
1分钟前
wuu发布了新的文献求助10
1分钟前
搜集达人应助Zirong采纳,获得10
1分钟前
1分钟前
hkxfg发布了新的文献求助10
1分钟前
wuu完成签到,获得积分10
1分钟前
哈哈哈完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188