亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Scalable Digital Twin Framework Based on a Novel Adaptive Ensemble Surrogate Model

可扩展性 计算机科学 替代模型 节点(物理) 钥匙(锁) 集合预报 数学优化 分布式计算 人工智能 数据挖掘 机器学习 工程类 数学 计算机安全 结构工程 数据库
作者
Xiaonan Lai,Xiwang He,Yong Pang,Fan Zhang,Dongcai Zhou,Sun We,Xueguan Song
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:145 (2) 被引量:10
标识
DOI:10.1115/1.4056077
摘要

Abstract The concept of digital twins is to have a digital model that can replicate the behavior of a physical asset in real time. However, using digital models to reflect the structural performance of physical assets usually faces high computational costs, which makes it difficult for the model to satisfy real-time requirements. As a technique to replace expensive simulations, surrogate models have great potential to solve this problem. In practice, however, the optimal individual surrogate model (ISM) applicable to a given problem usually changes as factors change, and this can be mitigated by integrating multiple ISMs. Therefore, this paper proposes a scalable digital twin framework based on a novel adaptive ensemble surrogate model. This ensemble not only provides robust approximation but also reduces the additional cost brought by the ensemble by reducing the number of ISMs participating in the ensemble through multicriterion model screening. Moreover, based on the characteristics of the finite element method, a node rearrangement method, which provides scalability for the construction of a digital model, is proposed. That is, the distribution and number of nodes can be customized to not only decrease the computational cost by reducing nodes but also obtain the information at key positions by customizing the locations of nodes. Numerical experiments are employed to verify the performance of the proposed ensemble and node rearrangement method. A telehandler is used as an example to build a scalable digital twin, which proves the feasibility and effectiveness of the framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白桃发布了新的文献求助10
1秒前
5秒前
乐乐应助满意的又蓝采纳,获得30
10秒前
13秒前
凡凡完成签到 ,获得积分10
19秒前
核桃应助Benhnhk21采纳,获得10
20秒前
科研通AI2S应助Joseph采纳,获得10
39秒前
朱宣诚发布了新的文献求助10
59秒前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
kokishi完成签到,获得积分10
2分钟前
辉哥完成签到,获得积分10
2分钟前
Ava应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
lo王一博_赵丽颖ve完成签到,获得积分10
4分钟前
4分钟前
朱宣诚发布了新的文献求助10
4分钟前
4分钟前
4分钟前
wukong完成签到,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI5应助朱宣诚采纳,获得10
4分钟前
噔噔蹬发布了新的文献求助10
4分钟前
CHF发布了新的文献求助10
5分钟前
5分钟前
CHF完成签到,获得积分10
5分钟前
朱宣诚发布了新的文献求助10
5分钟前
5分钟前
5分钟前
生命科学的第一推动力完成签到 ,获得积分10
5分钟前
5分钟前
上官若男应助zzb采纳,获得10
5分钟前
5分钟前
5分钟前
合适的楷瑞完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944967
求助须知:如何正确求助?哪些是违规求助? 4209640
关于积分的说明 13085653
捐赠科研通 3989647
什么是DOI,文献DOI怎么找? 2184248
邀请新用户注册赠送积分活动 1199558
关于科研通互助平台的介绍 1112737