亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Scalable Digital Twin Framework Based on a Novel Adaptive Ensemble Surrogate Model

可扩展性 计算机科学 替代模型 节点(物理) 钥匙(锁) 集合预报 数学优化 分布式计算 人工智能 数据挖掘 机器学习 工程类 数学 计算机安全 结构工程 数据库
作者
Xiaonan Lai,Xiwang He,Yong Pang,Fan Zhang,Dongcai Zhou,Sun We,Xueguan Song
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:145 (2) 被引量:10
标识
DOI:10.1115/1.4056077
摘要

Abstract The concept of digital twins is to have a digital model that can replicate the behavior of a physical asset in real time. However, using digital models to reflect the structural performance of physical assets usually faces high computational costs, which makes it difficult for the model to satisfy real-time requirements. As a technique to replace expensive simulations, surrogate models have great potential to solve this problem. In practice, however, the optimal individual surrogate model (ISM) applicable to a given problem usually changes as factors change, and this can be mitigated by integrating multiple ISMs. Therefore, this paper proposes a scalable digital twin framework based on a novel adaptive ensemble surrogate model. This ensemble not only provides robust approximation but also reduces the additional cost brought by the ensemble by reducing the number of ISMs participating in the ensemble through multicriterion model screening. Moreover, based on the characteristics of the finite element method, a node rearrangement method, which provides scalability for the construction of a digital model, is proposed. That is, the distribution and number of nodes can be customized to not only decrease the computational cost by reducing nodes but also obtain the information at key positions by customizing the locations of nodes. Numerical experiments are employed to verify the performance of the proposed ensemble and node rearrangement method. A telehandler is used as an example to build a scalable digital twin, which proves the feasibility and effectiveness of the framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助洞两采纳,获得10
8秒前
明理的绮山完成签到,获得积分10
9秒前
11秒前
殷楷霖发布了新的文献求助10
14秒前
Owen应助科研通管家采纳,获得10
15秒前
ceeray23应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
ceeray23应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
Liu发布了新的文献求助10
18秒前
20秒前
张志超发布了新的文献求助10
24秒前
25秒前
PalpitateAri发布了新的文献求助10
26秒前
万默完成签到 ,获得积分10
27秒前
28秒前
大喜完成签到,获得积分10
28秒前
Ava应助shuiyi采纳,获得10
30秒前
洞两发布了新的文献求助10
31秒前
大喜发布了新的文献求助50
31秒前
qiu发布了新的文献求助10
31秒前
冰糖葫芦娃完成签到,获得积分10
36秒前
37秒前
38秒前
yuanyuan发布了新的文献求助10
41秒前
洞两完成签到,获得积分10
44秒前
47秒前
苏幕遮发布了新的文献求助10
54秒前
1分钟前
joysa完成签到,获得积分10
1分钟前
顺心的外套完成签到,获得积分10
1分钟前
1分钟前
1分钟前
111完成签到 ,获得积分10
1分钟前
龚广山完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898