A Scalable Digital Twin Framework Based on a Novel Adaptive Ensemble Surrogate Model

可扩展性 计算机科学 替代模型 节点(物理) 钥匙(锁) 集合预报 数学优化 分布式计算 人工智能 数据挖掘 机器学习 工程类 数学 计算机安全 结构工程 数据库
作者
Xiaonan Lai,Xiwang He,Yong Pang,Fan Zhang,Dongcai Zhou,Sun We,Xueguan Song
出处
期刊:Journal of Mechanical Design 卷期号:145 (2) 被引量:10
标识
DOI:10.1115/1.4056077
摘要

Abstract The concept of digital twins is to have a digital model that can replicate the behavior of a physical asset in real time. However, using digital models to reflect the structural performance of physical assets usually faces high computational costs, which makes it difficult for the model to satisfy real-time requirements. As a technique to replace expensive simulations, surrogate models have great potential to solve this problem. In practice, however, the optimal individual surrogate model (ISM) applicable to a given problem usually changes as factors change, and this can be mitigated by integrating multiple ISMs. Therefore, this paper proposes a scalable digital twin framework based on a novel adaptive ensemble surrogate model. This ensemble not only provides robust approximation but also reduces the additional cost brought by the ensemble by reducing the number of ISMs participating in the ensemble through multicriterion model screening. Moreover, based on the characteristics of the finite element method, a node rearrangement method, which provides scalability for the construction of a digital model, is proposed. That is, the distribution and number of nodes can be customized to not only decrease the computational cost by reducing nodes but also obtain the information at key positions by customizing the locations of nodes. Numerical experiments are employed to verify the performance of the proposed ensemble and node rearrangement method. A telehandler is used as an example to build a scalable digital twin, which proves the feasibility and effectiveness of the framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的灵珊完成签到,获得积分10
刚刚
rgaerva完成签到,获得积分10
刚刚
星辰大海应助研友_ZG4ml8采纳,获得10
刚刚
123123完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
12345完成签到,获得积分10
2秒前
Chenmengyi完成签到,获得积分10
2秒前
刘松完成签到,获得积分10
3秒前
Ta沓如流星完成签到,获得积分10
4秒前
科研通AI2S应助yzl科研爱我采纳,获得10
4秒前
horace发布了新的文献求助30
6秒前
万能图书馆应助czx采纳,获得10
6秒前
6秒前
6秒前
wendy.lv完成签到,获得积分10
6秒前
MM216完成签到,获得积分10
7秒前
嘻嘻印发布了新的文献求助10
7秒前
今后应助336采纳,获得10
7秒前
科研通AI2S应助en采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得30
9秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
yyy完成签到,获得积分10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
Three_one完成签到 ,获得积分10
10秒前
搜集达人应助keKEYANTONG采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
明理涑应助科研通管家采纳,获得10
11秒前
11秒前
隐形曼青应助清秀的莺采纳,获得10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257646
求助须知:如何正确求助?哪些是违规求助? 2899495
关于积分的说明 8306249
捐赠科研通 2568732
什么是DOI,文献DOI怎么找? 1395281
科研通“疑难数据库(出版商)”最低求助积分说明 652995
邀请新用户注册赠送积分活动 630822