A machine learning method for predicting the probability of MODS using only non-invasive parameters

计算机科学 接收机工作特性 阿达布思 多器官功能障碍综合征 机器学习 人工智能 重症监护 医学 重症监护医学 支持向量机 外科 败血症
作者
Guanjun Liu,Jiameng Xu,Chengyi Wang,Ming Yu,Jing Yuan,Feng Tian,Guang Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:227: 107236-107236 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107236
摘要

Timely and accurate prediction of multiple organ dysfunction syndrome (MODS) is essential for the rescue and treatment of trauma patients However, existing methods are invasive, easily affected by artifacts and can be difficult to perform in a pre-hospital setting. We aim to develop prediction models for patients with MODS using only non-invasive parameters. In this study, records from 2319 patients were extracted from the Multiparameter Intelligent Monitoring in Intensive Care Ⅲ database (MIMIC Ⅲ), based on the sequential organ failure assessment (SOFA) score. Seven commonly used machine learning (ML) methods were selected and applied to develop a real-time prediction method for MODS based on full parameters (laboratory parameter. drug and non-invasive parameters, 57 parameters in total) and non-invasive parameters only (17 parameters) and compared with four traditional scoring systems. The prediction results using LightGBM (LGBM) and Adaboost based on the full parameter modeling were 0.959 for area under receiver operating characteristic curve (AUC), outperforming four traditional scoring systems. The removal of 40 parameters and retaining of 17 non-invasive parameters decreased the AUC value of LGBM by 0.015, which still outperformed all traditional scoring systems. A real-time and accurate MODS prediction method was developed in this paper based on non-invasive parameters by comparing the performance of four ML methods, which proved to be superior to the traditional scoring systems. This method can help medical staff to diagnose MODS as soon as possible and can improve the survival rate of patients in a pre-hospital setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助guo采纳,获得20
1秒前
Whisper-CCM发布了新的文献求助20
1秒前
星辰大海应助T拐拐采纳,获得10
2秒前
2秒前
2秒前
hhh发布了新的文献求助10
3秒前
3秒前
ll发布了新的文献求助10
3秒前
Vanessa完成签到,获得积分10
5秒前
悦耳白山发布了新的文献求助10
5秒前
研友_VZG7GZ应助凉拌小萝卜采纳,获得10
8秒前
8秒前
9秒前
9秒前
海东来应助南金采纳,获得30
9秒前
10秒前
11秒前
13秒前
雨醉东风发布了新的文献求助10
13秒前
Eliauk发布了新的文献求助10
14秒前
14秒前
immm发布了新的文献求助20
15秒前
hailee发布了新的文献求助20
16秒前
啦啦啦啦啦给啦啦啦啦啦的求助进行了留言
16秒前
汉堡包应助悦耳白山采纳,获得10
17秒前
SciGPT应助衣裳薄采纳,获得10
18秒前
SYLH应助稳重刚采纳,获得20
18秒前
tudou0210发布了新的文献求助10
18秒前
romif11398发布了新的文献求助50
19秒前
20秒前
21秒前
装满阳光的橘子完成签到,获得积分10
21秒前
Eliauk完成签到,获得积分10
22秒前
polar_star完成签到,获得积分10
22秒前
西瓜汁发布了新的文献求助10
22秒前
hhh完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
方知有发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010877
求助须知:如何正确求助?哪些是违规求助? 3550541
关于积分的说明 11305921
捐赠科研通 3284903
什么是DOI,文献DOI怎么找? 1810905
邀请新用户注册赠送积分活动 886591
科研通“疑难数据库(出版商)”最低求助积分说明 811509