A machine learning method for predicting the probability of MODS using only non-invasive parameters

计算机科学 接收机工作特性 阿达布思 多器官功能障碍综合征 机器学习 人工智能 重症监护 医学 重症监护医学 支持向量机 外科 败血症
作者
Guanjun Liu,Jiameng Xu,Chengyi Wang,Ming Yu,Jing Yuan,Feng Tian,Guang Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107236-107236 被引量:8
标识
DOI:10.1016/j.cmpb.2022.107236
摘要

Timely and accurate prediction of multiple organ dysfunction syndrome (MODS) is essential for the rescue and treatment of trauma patients However, existing methods are invasive, easily affected by artifacts and can be difficult to perform in a pre-hospital setting. We aim to develop prediction models for patients with MODS using only non-invasive parameters. In this study, records from 2319 patients were extracted from the Multiparameter Intelligent Monitoring in Intensive Care Ⅲ database (MIMIC Ⅲ), based on the sequential organ failure assessment (SOFA) score. Seven commonly used machine learning (ML) methods were selected and applied to develop a real-time prediction method for MODS based on full parameters (laboratory parameter. drug and non-invasive parameters, 57 parameters in total) and non-invasive parameters only (17 parameters) and compared with four traditional scoring systems. The prediction results using LightGBM (LGBM) and Adaboost based on the full parameter modeling were 0.959 for area under receiver operating characteristic curve (AUC), outperforming four traditional scoring systems. The removal of 40 parameters and retaining of 17 non-invasive parameters decreased the AUC value of LGBM by 0.015, which still outperformed all traditional scoring systems. A real-time and accurate MODS prediction method was developed in this paper based on non-invasive parameters by comparing the performance of four ML methods, which proved to be superior to the traditional scoring systems. This method can help medical staff to diagnose MODS as soon as possible and can improve the survival rate of patients in a pre-hospital setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夹心完成签到,获得积分10
刚刚
君莫笑完成签到,获得积分10
1秒前
内向问旋发布了新的文献求助10
1秒前
犹豫的铅笔完成签到,获得积分10
1秒前
ding应助DRDOC采纳,获得10
1秒前
1秒前
xh93完成签到,获得积分10
2秒前
PDL1完成签到,获得积分10
2秒前
YY发布了新的文献求助10
2秒前
2秒前
2秒前
Asystasia7完成签到,获得积分10
3秒前
3秒前
我是老大应助樱sky采纳,获得10
3秒前
yhy完成签到,获得积分10
3秒前
4秒前
超帅凡阳完成签到,获得积分10
4秒前
魏欣雨完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
tf完成签到,获得积分10
5秒前
英俊的铭应助lhh采纳,获得10
5秒前
婷_1988发布了新的文献求助10
5秒前
rrrrrrun发布了新的文献求助10
6秒前
XLYIDNNQJB完成签到 ,获得积分10
6秒前
jiajia发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
正直尔曼完成签到,获得积分10
7秒前
yan发布了新的文献求助10
8秒前
张远最帅完成签到,获得积分10
8秒前
夜雨听笑完成签到,获得积分10
8秒前
干净的冷安应助蝴蝶采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444