A machine learning method for predicting the probability of MODS using only non-invasive parameters

计算机科学 接收机工作特性 阿达布思 多器官功能障碍综合征 机器学习 人工智能 重症监护 医学 重症监护医学 支持向量机 外科 败血症
作者
Guanjun Liu,Jiameng Xu,Chengyi Wang,Ming Yu,Jing Yuan,Feng Tian,Guang Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107236-107236 被引量:8
标识
DOI:10.1016/j.cmpb.2022.107236
摘要

Timely and accurate prediction of multiple organ dysfunction syndrome (MODS) is essential for the rescue and treatment of trauma patients However, existing methods are invasive, easily affected by artifacts and can be difficult to perform in a pre-hospital setting. We aim to develop prediction models for patients with MODS using only non-invasive parameters. In this study, records from 2319 patients were extracted from the Multiparameter Intelligent Monitoring in Intensive Care Ⅲ database (MIMIC Ⅲ), based on the sequential organ failure assessment (SOFA) score. Seven commonly used machine learning (ML) methods were selected and applied to develop a real-time prediction method for MODS based on full parameters (laboratory parameter. drug and non-invasive parameters, 57 parameters in total) and non-invasive parameters only (17 parameters) and compared with four traditional scoring systems. The prediction results using LightGBM (LGBM) and Adaboost based on the full parameter modeling were 0.959 for area under receiver operating characteristic curve (AUC), outperforming four traditional scoring systems. The removal of 40 parameters and retaining of 17 non-invasive parameters decreased the AUC value of LGBM by 0.015, which still outperformed all traditional scoring systems. A real-time and accurate MODS prediction method was developed in this paper based on non-invasive parameters by comparing the performance of four ML methods, which proved to be superior to the traditional scoring systems. This method can help medical staff to diagnose MODS as soon as possible and can improve the survival rate of patients in a pre-hospital setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空城完成签到 ,获得积分10
3秒前
3秒前
3秒前
箜箜完成签到,获得积分20
4秒前
淡定的迎梦完成签到,获得积分10
4秒前
领导范儿应助A1phaYi采纳,获得10
7秒前
7秒前
9秒前
小猪猪发布了新的文献求助30
9秒前
10秒前
Chen完成签到 ,获得积分10
10秒前
11秒前
慕青应助gguc采纳,获得10
12秒前
深情安青应助帅666采纳,获得10
13秒前
孙兴燕发布了新的文献求助10
14秒前
雁回发布了新的文献求助10
14秒前
ZYS发布了新的文献求助10
15秒前
syz完成签到 ,获得积分10
16秒前
Criminology34给史燕照的求助进行了留言
17秒前
尤寄风发布了新的文献求助30
20秒前
雁回完成签到,获得积分10
20秒前
21秒前
22秒前
复杂的海完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
ZYS完成签到,获得积分10
25秒前
26秒前
27秒前
流草林完成签到,获得积分10
28秒前
sallltyyy发布了新的文献求助10
28秒前
annis发布了新的文献求助10
29秒前
29秒前
30秒前
31秒前
科研通AI6应助风清扬采纳,获得10
31秒前
31秒前
只喝露水发布了新的文献求助10
33秒前
lulu发布了新的文献求助10
33秒前
123给123的求助进行了留言
33秒前
zhouzhou发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431754
求助须知:如何正确求助?哪些是违规求助? 4544599
关于积分的说明 14193134
捐赠科研通 4463678
什么是DOI,文献DOI怎么找? 2446845
邀请新用户注册赠送积分活动 1438154
关于科研通互助平台的介绍 1414878