A machine learning method for predicting the probability of MODS using only non-invasive parameters

计算机科学 接收机工作特性 阿达布思 多器官功能障碍综合征 机器学习 人工智能 重症监护 医学 重症监护医学 支持向量机 外科 败血症
作者
Guanjun Liu,Jiameng Xu,Chengyi Wang,Ming Yu,Jing Yuan,Feng Tian,Guang Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:227: 107236-107236 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107236
摘要

Timely and accurate prediction of multiple organ dysfunction syndrome (MODS) is essential for the rescue and treatment of trauma patients However, existing methods are invasive, easily affected by artifacts and can be difficult to perform in a pre-hospital setting. We aim to develop prediction models for patients with MODS using only non-invasive parameters. In this study, records from 2319 patients were extracted from the Multiparameter Intelligent Monitoring in Intensive Care Ⅲ database (MIMIC Ⅲ), based on the sequential organ failure assessment (SOFA) score. Seven commonly used machine learning (ML) methods were selected and applied to develop a real-time prediction method for MODS based on full parameters (laboratory parameter. drug and non-invasive parameters, 57 parameters in total) and non-invasive parameters only (17 parameters) and compared with four traditional scoring systems. The prediction results using LightGBM (LGBM) and Adaboost based on the full parameter modeling were 0.959 for area under receiver operating characteristic curve (AUC), outperforming four traditional scoring systems. The removal of 40 parameters and retaining of 17 non-invasive parameters decreased the AUC value of LGBM by 0.015, which still outperformed all traditional scoring systems. A real-time and accurate MODS prediction method was developed in this paper based on non-invasive parameters by comparing the performance of four ML methods, which proved to be superior to the traditional scoring systems. This method can help medical staff to diagnose MODS as soon as possible and can improve the survival rate of patients in a pre-hospital setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃货发布了新的文献求助10
刚刚
1秒前
小二郎应助夜休2024采纳,获得10
2秒前
2秒前
2秒前
3秒前
今后应助爬不起来采纳,获得10
3秒前
林机一动发布了新的文献求助10
3秒前
林一楠完成签到,获得积分10
4秒前
Dragon发布了新的文献求助10
4秒前
贵州洋芋粑完成签到,获得积分10
4秒前
黄楠发布了新的文献求助10
5秒前
6秒前
hurb完成签到,获得积分10
7秒前
咚咚发布了新的文献求助10
7秒前
lemon完成签到,获得积分10
7秒前
黑尼格发布了新的文献求助10
8秒前
Gotyababy发布了新的文献求助10
8秒前
科研通AI2S应助徐昊雯采纳,获得10
9秒前
上官若男应助健康的雪萍采纳,获得10
9秒前
9秒前
9秒前
长颈鹿没有脖子完成签到 ,获得积分10
10秒前
昵称呢完成签到,获得积分10
11秒前
科研通AI5应助syk采纳,获得10
11秒前
贝贝完成签到,获得积分10
12秒前
13秒前
wanghao婷完成签到,获得积分20
13秒前
无限松发布了新的文献求助10
13秒前
13秒前
ekswai发布了新的文献求助10
13秒前
Eleven888关注了科研通微信公众号
14秒前
14秒前
林机一动完成签到,获得积分10
14秒前
11完成签到,获得积分10
14秒前
15秒前
小v1212完成签到,获得积分20
15秒前
lemon发布了新的文献求助10
16秒前
zzzxx完成签到,获得积分10
17秒前
如来发布了新的文献求助20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709