亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved Kalman particle swarm optimization for modeling and optimizing of boiler combustion characteristics

锅炉(水暖) 煤粉锅炉 燃烧 粒子群优化 煤燃烧产物 发电 工艺工程 火力发电站 氮氧化物 环境科学 热效率 计算机科学 汽车工程 废物管理 工程类 功率(物理) 化学 算法 量子力学 物理 有机化学
作者
Jing Liang,Hao Guo,Ke Chen,Kunjie Yu,Caitong Yue,Xia Li
出处
期刊:Robotica [Cambridge University Press]
卷期号:41 (4): 1087-1097 被引量:2
标识
DOI:10.1017/s026357472200145x
摘要

Abstract With the rapid development of the national economy, the demand for electricity is also growing. Thermal power generation accounts for the highest proportion of power generation, and coal is the most commonly used combustion material. The massive combustion of coal has led to serious environmental pollution. It is significant to improve energy conversion efficiency and reduce pollutant emissions effectively. In this paper, an extreme learning machine model based on improved Kalman particle swarm optimization (ELM-IKPSO) is proposed to establish the boiler combustion model. The proposed modeling method is applied to the combustion modeling process of a 300 MWe pulverized coal boiler. The simulation results show that compared with the same type of modeling method, ELM-IKPSO can better predict the boiler thermal efficiency and NOx emission concentration and also show better generalization performance. Finally, multi-objective optimization is carried out on the established model, and a set of mutually non-dominated boiler combustion solutions is obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷风完成签到 ,获得积分10
1秒前
徐per爱豆完成签到 ,获得积分10
2秒前
今后应助阡陌殇殇采纳,获得10
4秒前
7秒前
10秒前
11秒前
Orange应助happy贼王采纳,获得10
14秒前
RR发布了新的文献求助10
15秒前
HUOZHUANGCHAO完成签到,获得积分10
17秒前
18秒前
Achu发布了新的文献求助10
23秒前
小葛完成签到,获得积分10
25秒前
25秒前
秋殇浅寞完成签到,获得积分10
27秒前
秋殇浅寞发布了新的文献求助30
30秒前
Owen应助月白lala采纳,获得10
32秒前
FashionBoy应助Juniorrr采纳,获得20
34秒前
34秒前
拓跋半雪发布了新的文献求助30
38秒前
happy贼王发布了新的文献求助10
38秒前
lsl完成签到 ,获得积分10
42秒前
43秒前
45秒前
48秒前
小丿丫丿丫完成签到 ,获得积分10
48秒前
happy贼王发布了新的文献求助10
51秒前
52秒前
斯文败类应助RR采纳,获得10
54秒前
不说再见发布了新的文献求助10
56秒前
happy贼王完成签到,获得积分10
56秒前
领导范儿应助嘚嘚采纳,获得10
58秒前
自由的中蓝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
拓跋半雪完成签到,获得积分10
1分钟前
yfq1018发布了新的文献求助10
1分钟前
zz发布了新的文献求助10
1分钟前
李梓航完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
kkk发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253515
求助须知:如何正确求助?哪些是违规求助? 4416821
关于积分的说明 13750562
捐赠科研通 4289289
什么是DOI,文献DOI怎么找? 2353359
邀请新用户注册赠送积分活动 1350077
关于科研通互助平台的介绍 1309966