亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved Kalman particle swarm optimization for modeling and optimizing of boiler combustion characteristics

锅炉(水暖) 煤粉锅炉 燃烧 粒子群优化 煤燃烧产物 发电 工艺工程 火力发电站 氮氧化物 环境科学 热效率 计算机科学 汽车工程 废物管理 工程类 功率(物理) 化学 算法 量子力学 物理 有机化学
作者
Jing Liang,Hao Guo,Ke Chen,Kunjie Yu,Caitong Yue,Xia Li
出处
期刊:Robotica [Cambridge University Press]
卷期号:41 (4): 1087-1097 被引量:2
标识
DOI:10.1017/s026357472200145x
摘要

Abstract With the rapid development of the national economy, the demand for electricity is also growing. Thermal power generation accounts for the highest proportion of power generation, and coal is the most commonly used combustion material. The massive combustion of coal has led to serious environmental pollution. It is significant to improve energy conversion efficiency and reduce pollutant emissions effectively. In this paper, an extreme learning machine model based on improved Kalman particle swarm optimization (ELM-IKPSO) is proposed to establish the boiler combustion model. The proposed modeling method is applied to the combustion modeling process of a 300 MWe pulverized coal boiler. The simulation results show that compared with the same type of modeling method, ELM-IKPSO can better predict the boiler thermal efficiency and NOx emission concentration and also show better generalization performance. Finally, multi-objective optimization is carried out on the established model, and a set of mutually non-dominated boiler combustion solutions is obtained.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
善善完成签到 ,获得积分10
2秒前
2秒前
3秒前
kk发布了新的文献求助10
5秒前
11秒前
倒逆之蝶发布了新的文献求助10
13秒前
老实的怀蕊完成签到,获得积分10
15秒前
26秒前
32秒前
39秒前
40秒前
43秒前
李爱国应助哈哈哈哈采纳,获得10
45秒前
Weilu完成签到 ,获得积分10
46秒前
小妖发布了新的文献求助10
46秒前
49秒前
51秒前
才疏学浅完成签到,获得积分20
52秒前
PPD发布了新的文献求助10
58秒前
1分钟前
Lz555完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zly完成签到 ,获得积分0
1分钟前
1分钟前
小蓝发布了新的文献求助30
1分钟前
1分钟前
倒逆之蝶发布了新的文献求助10
1分钟前
跳跃毒娘发布了新的文献求助10
1分钟前
1分钟前
欢欢完成签到,获得积分20
1分钟前
领导范儿应助独特的鹅采纳,获得10
1分钟前
欢欢发布了新的文献求助10
1分钟前
yuqian发布了新的文献求助10
1分钟前
ding应助欢欢采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
开放青旋应助科研通管家采纳,获得10
1分钟前
开放青旋应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664093
求助须知:如何正确求助?哪些是违规求助? 4857445
关于积分的说明 15107133
捐赠科研通 4822538
什么是DOI,文献DOI怎么找? 2581527
邀请新用户注册赠送积分活动 1535744
关于科研通互助平台的介绍 1493963