材料科学
电解质
离子电导率
锂(药物)
阳极
电化学窗口
塑料晶体
化学工程
法拉第效率
电化学
聚乙二醇
碳酸乙烯酯
无机化学
电极
相(物质)
有机化学
化学
工程类
内分泌学
医学
物理化学
作者
Zhenchao Li,Qiang Liu,Yirui Deng,Miaomiao Zhou,Wenhao Tang,Huiyou Dong,Wenhui Zhao,Ruiping Liu
标识
DOI:10.1016/j.mtener.2022.101198
摘要
The low ionic conductivity and unstable electrolyte/electrode interface of solid-state electrolytes are the key issues hindering the progress of solid-state lithium batteries. Herein, a cross-linked succinonitrile (SN)-based solid-state electrolyte was synthesized by in situ thermal polymerization using polyethylene glycol diacrylate, vinyl carbonate, and SN. Vinyl carbonate and polyethylene glycol diacrylate are cross-linked to form a polymer network structure, which can immobilize SN and lithium difluoro(oxalato)borate in the electrolyte, thereby preventing the side reactions of SN and lithium metal. The as-prepared quasi-solid gel electrolyte exhibits a wide electrochemical window (5.3 V vs. Li+/Li), a high ionic conductivity (0.3 mS/cm), a good lithium-ion transfer number (0.58) at room temperature, and good interfacial stability between the electrodes and electrolyte. Therefore, cross-linked SN-based polymer electrolyte not only enables reversible lithium anode stripping/plating and impedes side reactions on the anode side but also accommodates high voltage cathode materials. The LiCoO2/Li cell shows a high specific capacity of 140 mAh/g, with a capacity retention rate of 87.2% after 350 cycles and a stable coulombic efficiency of about 99.5% at an operating voltage of 2.75∼4.3 V. This work paves a new path for designing high-safety electrolytes and facilitating the practical application of high-voltage lithium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI