Single‐Atom Catalysts with Ultrahigh Catalase‐Like Activity Through Electron Filling and Orbital Energy Regulation

催化作用 分解 纳米材料 材料科学 过氧化氢酶 Atom(片上系统) 贵金属 纳米技术 合理设计 原子轨道 金属 吸附 组合化学 化学 电子 物理化学 物理 有机化学 嵌入式系统 冶金 量子力学 计算机科学
作者
Zhiwei Wang,Wenlong Wang,Jin Wang,Dingsheng Wang,Milan Liu,Qian-Yuan Wu,Hong‐Ying Hu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (2) 被引量:37
标识
DOI:10.1002/adfm.202209560
摘要

Abstract Developing nanomaterials with high H 2 O 2 ‐decomposition capacity to replace traditional biological enzymes is of great importance in environmental, semiconductor, and medical fields. However, a lack of understanding of the reaction mechanism leads to aimless catalyst design and limits further improvement of catalytic activity. Here, the regulatory mechanism based on the electron filling and orbital energies of the metal active centers is demonstrated and a rational catalyst design strategy is provided to achieve ultrahigh H 2 O 2 ‐decomposition activity. Among the five platinum‐group‐metal active centers investigated in this study, the Ir–N 4 with partially occupied d x2−y2 and d xz orbitals and the highest d ‐band center most strongly interacts with H 2 O 2 , and show the lowest energy barrier for H 2 O 2 decomposition. As expected, the single‐atom Ir catalyst (Ir‐NC) shows an ultrahigh H 2 O 2 ‐decomposition capacity, which is 1614‐times higher than that of natural catalase. Surface‐adsorbed atomic oxygen is observed and verified to be the key intermediate for O 2 generation. Biocompatible Ir‐NC is effective in scavenging intracellular reactive oxygen species and holds great potential for clinical therapeutics associated with oxidative stress. This study advances the mechanistic understanding of H 2 O 2 decomposition and provides useful guidance for rational design of high‐performance artificial nanozymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jdmeme完成签到 ,获得积分10
刚刚
DVD完成签到 ,获得积分10
1秒前
学术嫪毐完成签到,获得积分10
1秒前
Xyyy发布了新的文献求助10
2秒前
uu完成签到,获得积分10
2秒前
小蘑菇应助赵赵赵采纳,获得10
2秒前
阿兹卡班狂徒完成签到 ,获得积分10
2秒前
2秒前
yuefeng发布了新的文献求助10
3秒前
澳臻白发布了新的文献求助10
3秒前
4秒前
刘大妮发布了新的文献求助10
4秒前
4秒前
王欧尼发布了新的文献求助10
5秒前
sooya关注了科研通微信公众号
5秒前
6秒前
6秒前
青木蓝发布了新的文献求助10
8秒前
852应助gaga采纳,获得10
8秒前
9秒前
9秒前
游尘发布了新的文献求助10
10秒前
bkagyin应助zhaowenxian采纳,获得10
10秒前
水电费第三方完成签到,获得积分20
11秒前
斯文败类应助lalala采纳,获得10
11秒前
小王爱看文献完成签到,获得积分10
12秒前
李明完成签到,获得积分10
12秒前
酷波er应助Khr1stINK采纳,获得10
13秒前
cora发布了新的文献求助10
13秒前
shelly0621发布了新的文献求助10
13秒前
中华有为发布了新的文献求助10
13秒前
特兰克斯发布了新的文献求助10
13秒前
Ares完成签到,获得积分10
14秒前
14秒前
在水一方应助garyaa采纳,获得10
14秒前
DAN_完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助屹舟采纳,获得10
15秒前
科研通AI5应助一一采纳,获得10
16秒前
隐形的紫菜完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794