基因敲除
小干扰RNA
基因沉默
内体
细胞质
内吞作用
细胞生物学
化学
细胞内
阿尔戈瑙特
融合蛋白
RNA干扰
细胞穿透肽
肽
核糖核酸
分子生物学
生物
细胞
生物化学
基因
重组DNA
作者
Momoko Nakamura,Kei Fujiwara,Nobuhide Doi
标识
DOI:10.1186/s12951-022-01667-4
摘要
Abstract Background Although protein-based methods using cell-penetrating peptides such as TAT have been expected to provide an alternative approach to siRNA delivery, the low efficiency of endosomal escape of siRNA/protein complexes taken up into cells by endocytosis remains a problem. Here, to overcome this problem, we adopted the membrane penetration-enhancing peptide S19 from human syncytin 1 previously identified in our laboratory. Results We prepared fusion proteins in which the S19 and TAT peptides were fused to the viral RNA-binding domains (RBDs) as carrier proteins, added the RBD-S19-TAT/siRNA complex to human cultured cells, and investigated the cytoplasmic delivery of the complex and the knockdown efficiency of target genes. We found that the intracellular uptake of the RBD-S19-TAT/siRNA complex was increased compared to that of the RBD-TAT/siRNA complex, and the expression level of the target mRNA was decreased. Because siRNA must dissociate from RBD and bind to Argonaute 2 (Ago2) to form the RNA-induced silencing complex (RISC) after the protein/siRNA complex is delivered into the cytoplasm, a dilemma arises: stronger binding between RBD and siRNA increases intracellular uptake but makes RISC formation more difficult. Thus, we next prepared fusion proteins in which the S19 and TAT peptides were fused with Ago2 instead of RBD and found that the efficiencies of siRNA delivery and knockdown obtained using TAT-S19-Ago2 were higher than those using TAT-Ago2. In addition, we found that the smallest RISC delivery induced faster knockdown than traditional siRNA lipofection, probably due to the decreased time required for RISC formation in the cytoplasm. Conclusion These results indicated that S19 and TAT-fused siRNA-binding proteins, especially Ago2, should be useful for the rapid and efficient delivery of siRNA without the addition of any endosome-disrupting agent.
科研通智能强力驱动
Strongly Powered by AbleSci AI