Few-Atom Copper Cluster Facilitates H2O2 Activation to Promote Selective Oxidation of Benzene to Phenol

化学 苯酚 星团(航天器) Atom(片上系统) 有机化学 计算机科学 嵌入式系统 程序设计语言
作者
Ting Zhang,Haishan Su,Xianwen Zhang,Yang Zhao,Jian Zhou,Lili Zhang,Shengfa Ye,Yuxiao Ding,Xiaoyan Sun
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c00340
摘要

The catalytic oxidation of benzene faces challenges in achieving high activity and selectivity. While single-atom catalysts present intriguing potential for this transformation, their practical implementation is hindered by intrinsic limitations in the mass-specific activity. In this context, few-atom cluster catalysts have emerged as an alternative, leveraging well-defined metal ensemble effects that enable precisely tailored active sites and enhanced interatomic synergies. Herein, we introduce an atomic cluster supported on a graphitic carbonitride (CN) catalyst (Cu3/CN), exhibiting excellent catalytic performance for selective oxidation of benzene to phenol, with superior turnover frequency (TOF) to that of single-atom Cu1/CN (719 h-1 vs 280 h-1) and suppressing phenol selectivity to that of nanoparticle CuNP/CN (95.3% vs 77.2%). Multimodal mechanistic investigations unambiguously identify the critical role of the adsorbed O* on the Cu site (Cu═O*) for C-H-oxidation, verified by both in situ spectroscopic monitoring and ex situ surface analysis. Complementary density functional theory calculations validate Cu atomic cluster (Cu3) site features a higher d-band center and larger charge transfer with the H2O2 molecule than that of the isolated Cu1 site. The sufficient charge transfer stretches the O-O bond in H2O2 to facilitate the formation of the Cu═O* species. Furthermore, the resulting Cu═O* in the Cu3 site demonstrates a significant hybridization of the O 2p orbitals and Cu 3d orbitals at the Fermi level, which endows it with high activity for benzene activation. The appropriate ensemble effect of the unique Cu3 architecture is the key to its higher catalytic performances. This work establishes a structure-performance correlation that highlights the critical role of atomic cluster architecture in optimizing catalytic functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wwyy完成签到,获得积分10
刚刚
Echoheart发布了新的文献求助10
1秒前
彭于晏应助jjb采纳,获得10
1秒前
ChenChen完成签到,获得积分20
2秒前
2秒前
3秒前
今后应助虚幻仇血采纳,获得10
3秒前
科研通AI5应助雪白扬采纳,获得10
3秒前
5秒前
欢喜沁完成签到,获得积分10
5秒前
FashionBoy应助闾丘惜萱采纳,获得10
5秒前
酷波er应助流云采纳,获得10
6秒前
张火火发布了新的文献求助10
7秒前
CHEN完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
9秒前
nini完成签到,获得积分10
9秒前
9秒前
awslsdl完成签到,获得积分20
9秒前
10秒前
11秒前
11秒前
11秒前
11秒前
awslsdl发布了新的文献求助10
11秒前
z_king_d_23发布了新的文献求助10
12秒前
TongKY完成签到 ,获得积分10
12秒前
13秒前
熊大哥发布了新的文献求助10
13秒前
14秒前
14秒前
熊啊发布了新的文献求助10
15秒前
15秒前
奥特曼发布了新的文献求助10
15秒前
sxm发布了新的文献求助10
16秒前
在水一方应助z_king_d_23采纳,获得10
16秒前
丘比特应助Pupu采纳,获得10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421