Deep Neural Network Denoising Model Based on Sparse Representation Algorithm for ECG Signal

降噪 超参数 计算机科学 人工智能 可解释性 人工神经网络 预处理器 模式识别(心理学) 噪音(视频) 稀疏逼近 算法 代表(政治) 机器学习 政治 政治学 法学 图像(数学)
作者
Yanrong Hou,Ruixia Liu,Minglei Shu,Xiaoyun Xie,Changfang Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:9
标识
DOI:10.1109/tim.2023.3251408
摘要

Electrocardiogram (ECG) denoising is very important for heart diseases diagnosis. The traditional ECG denoising models have problems such as single noise type and poor interpretability of deep neural networks. The innovation of the proposed method is to incorporate the precious achievements of traditional methods into the design of neural networks and to build a bridge between them. Therefore, a novel interpretable deep denoising framework based on sparse representation is proposed in this study, and the half quadratic splitting (HQS) algorithm is applied to decompose the denoising method into sparse representations as an iterative solution process. In addition, a new weight distribution module is designed to extract adpative hyperparameters based on ECG correlation instead of empirical values and greatly improves the efficiency of hyperparameter selection. To demonstrate the fairness and the effectiveness of the proposed method, four different denoising models with different data preprocessing technique are used for comparison. The extensive experimental validation and simulation studies demonstrated that the proposed framework has excellent performance in quantitative and visual evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助认真的思枫采纳,获得30
刚刚
1秒前
温暖伟祺完成签到,获得积分10
1秒前
1秒前
1秒前
CipherSage应助240325采纳,获得10
1秒前
2秒前
安详书蝶发布了新的文献求助10
3秒前
直率惜文发布了新的文献求助10
3秒前
在水一方应助lq采纳,获得10
4秒前
5秒前
Silvia发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
hist发布了新的文献求助10
7秒前
老北京发布了新的文献求助10
11秒前
情怀应助结实的小土豆采纳,获得10
12秒前
科研通AI6应助吕佳蔚采纳,获得10
12秒前
13秒前
大模型应助舒服的白凝采纳,获得10
13秒前
wujiwuhui发布了新的文献求助10
13秒前
花花完成签到,获得积分10
15秒前
17秒前
17秒前
beyonder完成签到,获得积分10
18秒前
Hui_2023发布了新的文献求助10
19秒前
香蕉觅云应助慕雨倾欣采纳,获得10
21秒前
情怀应助Silvia采纳,获得10
21秒前
白子双完成签到,获得积分10
22秒前
沅芷完成签到,获得积分10
23秒前
hhl完成签到,获得积分10
28秒前
慕青应助鲜艳的芹采纳,获得10
28秒前
wuduolife发布了新的文献求助10
29秒前
29秒前
浮游应助科研通管家采纳,获得10
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
32秒前
共享精神应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866