Reinforcement learning applied to wastewater treatment process control optimization: Approaches, challenges, and path forward

强化学习 计算机科学 过程(计算) 水准点(测量) 钥匙(锁) 控制(管理) 桥接(联网) 人工智能 机器学习 大地测量学 计算机网络 计算机安全 操作系统 地理
作者
Henry C. Croll,Kaoru Ikuma,Say Kee Ong,Soumik Sarkar
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:53 (20): 1775-1794 被引量:14
标识
DOI:10.1080/10643389.2023.2183699
摘要

AbstractWastewater treatment process control optimization is a complex task in a highly nonlinear environment. Reinforcement learning (RL) is a machine learning technique that stands out for its ability to perform better than human operators for certain high-dimensional, complex decision-making problems, making it an ideal candidate for wastewater treatment process control optimization. However, while RL control optimization strategies have shown potential to provide operational cost savings and effluent quality improvements, RL has proven slow to be adopted among environmental engineers. This review provides an overview of existing RL applications for wastewater treatment control optimization found in literature and evaluates five key challenges that must be addressed prior to widespread adoption: practical RL implementation, managing data, integrating existing process models, building trust in empirical control strategies, and bridging gaps in professional training. Finally, this review discusses potential paths forward to addressing each key challenge, including leveraging soft sensing to improve online data collection, working with process engineers to integrate RL programming with existing industry software, utilizing supervised training to build expert knowledge into the RL agent, and focusing research efforts on known scenarios such as the Benchmark Simulation Model No. 1 to build a robust database of RL agent control optimization results.Keywords: Artificial intelligencecontrol optimizationmachine learningreinforcement learningwastewater treatmentHANDLING EDITORS: Hyunjung Kim and Scott Bradford AcknowledgementsThe authors would like to acknowledge Joshua Buelow for his assistance in evaluating the practical application of some elements covered in this review.Disclosure statementNo potential conflict of interest was reported by the authors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
残荷听雨发布了新的文献求助10
3秒前
祁芷蕊完成签到 ,获得积分10
5秒前
6秒前
chengcheng完成签到,获得积分10
7秒前
脑洞疼应助精炼猫薄荷采纳,获得10
8秒前
9秒前
赘婿应助qyh采纳,获得10
9秒前
小二郎应助有云采纳,获得10
10秒前
10秒前
皇帝的床帘完成签到,获得积分10
10秒前
dalin发布了新的文献求助10
10秒前
Rui完成签到,获得积分10
10秒前
wangxiaoyating完成签到,获得积分10
10秒前
11秒前
碗碗豆喵完成签到 ,获得积分10
11秒前
Ann完成签到,获得积分10
12秒前
danxue完成签到,获得积分10
13秒前
Star完成签到 ,获得积分10
14秒前
zjh发布了新的文献求助10
14秒前
英俊的铭应助残荷听雨采纳,获得10
14秒前
杨帆发布了新的文献求助10
14秒前
Wan发布了新的文献求助10
15秒前
机智雪糕完成签到 ,获得积分10
16秒前
火花发布了新的文献求助10
16秒前
18秒前
lunwenshunli666完成签到 ,获得积分10
18秒前
SciGPT应助黄淮二傻采纳,获得10
18秒前
998877剑指完成签到,获得积分10
19秒前
dalin完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
小白发布了新的文献求助10
23秒前
Lucas应助老迟到的惜寒采纳,获得10
23秒前
火花完成签到,获得积分20
24秒前
2220完成签到 ,获得积分10
24秒前
hotcas完成签到,获得积分10
25秒前
zjh完成签到,获得积分10
26秒前
系统提示完成签到,获得积分10
27秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388