聚类分析
瓶颈
数据挖掘
CURE数据聚类算法
生物
计算机科学
算法
相关聚类
人工智能
嵌入式系统
作者
Tu Luan,Harihara Subrahmaniam Muralidharan,Marwan Alshehri,Ipsa Mittra,Mihai Pop
摘要
16S rRNA gene sequence clustering is an important tool in characterizing the diversity of microbial communities. As 16S rRNA gene data sets are growing in size, existing sequence clustering algorithms increasingly become an analytical bottleneck. Part of this bottleneck is due to the substantial computational cost expended on small clusters and singleton sequences. We propose an iterative sampling-based 16S rRNA gene sequence clustering approach that targets the largest clusters in the data set, allowing users to stop the clustering process when sufficient clusters are available for the specific analysis being targeted. We describe a probabilistic analysis of the iterative clustering process that supports the intuition that the clustering process identifies the larger clusters in the data set first. Using real data sets of 16S rRNA gene sequences, we show that the iterative algorithm, coupled with an adaptive sampling process and a mode-shifting strategy for identifying cluster representatives, substantially speeds up the clustering process while being effective at capturing the large clusters in the data set. The experiments also show that SCRAPT (Sample, Cluster, Recruit, AdaPt and iTerate) is able to produce operational taxonomic units that are less fragmented than popular tools: UCLUST, CD-HIT and DNACLUST. The algorithm is implemented in the open-source package SCRAPT. The source code used to generate the results presented in this paper is available at https://github.com/hsmurali/SCRAPT.
科研通智能强力驱动
Strongly Powered by AbleSci AI