Learning Spatial-Frequency Transformer for Visual Object Tracking

计算机科学 Softmax函数 人工智能 变压器 模式识别(心理学) 空间频率 分割 计算机视觉 深度学习 量子力学 光学 物理 电压
作者
Chuanming Tang,Xiao Wang,Yuanchao Bai,Zhe Wu,Jianlin Zhang,Yongmei Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 5102-5116 被引量:4
标识
DOI:10.1109/tcsvt.2023.3249468
摘要

Recently, some researchers have begun to adopt the Transformer to combine or replace the widely used ResNet as their new backbone network. As the Transformer captures the long-range relations between pixels well using the self-attention scheme, which complements the issues caused by the limited receptive field of CNN. Although their trackers work well in regular scenarios, they simply flatten the 2D features into a sequence to better match the Transformer. We believe these operations ignore the spatial prior of the target object, which may lead to sub-optimal results only. In addition, many works demonstrate that self-attention is actually a low-pass filter, which is independent of input features or keys/queries. That is to say, it may suppress the high-frequency component of the input features and preserve or even amplify the low-frequency information. To handle these issues, in this paper, we propose a unified Spatial-Frequency Transformer that models the Gaussian spatial Prior and High-frequency emphasis Attention (GPHA) simultaneously. To be specific, Gaussian spatial prior is generated using dual Multi-Layer Perceptrons (MLPs) and injected into the similarity matrix produced by multiplying Query and Key features in self-attention. The output will be fed into a softmax layer and then decomposed into two components, i.e., the direct and high-frequency signal. The low- and high-pass branches are rescaled and combined to achieve all-pass, therefore, the high-frequency features will be protected well in stacked self-attention layers. We further integrate the Spatial-Frequency Transformer into the Siamese tracking framework and propose a novel tracking algorithm termed SFTransT. The cross-scale fusion based SwinTransformer is adopted as the backbone, and also a multi-head cross-attention module is used to boost the interaction between search and template features. The output will be fed into the tracking head for target localization. Extensive experiments on short-term and long-term tracking benchmarks all demonstrate the effectiveness of our proposed framework. Source code will be released at https://github.com/Tchuanm/SFTransT.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏爱学习完成签到 ,获得积分10
1秒前
腼腆的小熊猫完成签到 ,获得积分10
7秒前
spy完成签到 ,获得积分10
10秒前
rad1413完成签到 ,获得积分10
16秒前
SCI的芷蝶完成签到 ,获得积分10
16秒前
张萌发布了新的文献求助20
18秒前
燕山堂完成签到 ,获得积分10
20秒前
安安完成签到 ,获得积分10
24秒前
叶痕TNT完成签到 ,获得积分10
25秒前
又又完成签到,获得积分10
27秒前
阔达白筠完成签到 ,获得积分10
28秒前
28秒前
千玺的小粉丝儿完成签到,获得积分10
29秒前
ZHUTOU完成签到,获得积分10
30秒前
huangbing123完成签到 ,获得积分10
32秒前
匆匆赶路人完成签到 ,获得积分10
34秒前
nanfeng完成签到 ,获得积分10
35秒前
默默尔安发布了新的文献求助10
36秒前
38秒前
mix完成签到 ,获得积分10
38秒前
努力退休小博士完成签到 ,获得积分10
41秒前
程程发布了新的文献求助10
42秒前
Cosmosurfer发布了新的文献求助50
44秒前
44秒前
lll完成签到 ,获得积分10
45秒前
47秒前
善学以致用应助土方子采纳,获得10
48秒前
妇产科医生完成签到 ,获得积分10
49秒前
ADAN完成签到,获得积分10
50秒前
Bydoctor发布了新的文献求助10
51秒前
炎炎夏无声完成签到 ,获得积分10
53秒前
54秒前
默默尔安发布了新的文献求助10
56秒前
谢陈完成签到 ,获得积分10
57秒前
yiren完成签到 ,获得积分10
58秒前
MQ完成签到 ,获得积分10
1分钟前
土方子发布了新的文献求助10
1分钟前
土方子完成签到,获得积分10
1分钟前
klicking完成签到,获得积分10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555826
求助须知:如何正确求助?哪些是违规求助? 3131450
关于积分的说明 9391147
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890