Adaptive Graph Fusion Convolutional Recurrent Network for Traffic Forecasting

计算机科学 智能交通系统 流量(计算机网络) 数据挖掘 图形 交通生成模型 先进的交通管理系统 人工智能 实时计算 理论计算机科学 计算机网络 工程类 土木工程
作者
Yan Xu,Yu Lu,Changtao Ji,Qiyuan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (13): 11465-11475 被引量:14
标识
DOI:10.1109/jiot.2023.3244182
摘要

Traffic flow prediction is the foundation of urban traffic guidance and control, as well as the main function of an intelligent transportation system (ITS). Accurate traffic flow prediction is important for road users, traffic management departments, and private enterprises. However, traffic flows usually show a high degree of variability, correlation, and complex patterns in both temporal and spatial domain, which makes accurate traffic flow prediction a challenging task. How to capture the potential and dynamic spatial–temporal relationships of traffic data has been the bottleneck issue for intelligent transportation researchers. To solve the above problems, this article proposes an adaptive graph fusion convolutional recurrent network (AGFCRN) to model the temporal and spatial characteristics of traffic flow data dynamically and adaptively. An adaptive graph fusion convolution is proposed to discover the changing relationships between traffic volumes without a priori knowledge. It uses a self-learned node embedding to generate static graphs and combines current and historical states to generate dynamic graphs at each time step. A gated recurrent layer with residual structure is designed to mitigate the decay of prediction effects in long-term modeling. In addition, an attention layer incorporating self-learned node embedding is introduced in the AGFCRN to efficiently adjust the prediction pattern of each node. Experiments on several public data sets demonstrate that AGFCRN can achieve competitive performance compared to other typical and state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羽寞发布了新的文献求助20
1秒前
。。发布了新的文献求助10
1秒前
1秒前
科研通AI5应助qwerty采纳,获得10
1秒前
2秒前
读不完的文献啊完成签到,获得积分10
2秒前
李健的小迷弟应助万木采纳,获得10
2秒前
2秒前
ANHYPNIA发布了新的文献求助10
3秒前
慕青应助慢慢采纳,获得30
3秒前
欢喜的毛豆完成签到,获得积分10
3秒前
4秒前
高兴吐司完成签到,获得积分10
5秒前
明理鱼完成签到,获得积分10
5秒前
5秒前
Jasper应助小朱朱采纳,获得10
6秒前
Owen应助我爱看文献采纳,获得10
6秒前
6秒前
7秒前
黑面宝宝发布了新的文献求助10
7秒前
苦哈哈发布了新的文献求助10
7秒前
8秒前
8秒前
博修发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
kk应助EasonYan采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得20
9秒前
大模型应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
佳佳完成签到,获得积分10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
罗旭发布了新的文献求助10
9秒前
CipherSage应助科研通管家采纳,获得10
10秒前
whatever应助科研通管家采纳,获得10
10秒前
xiaoting应助科研通管家采纳,获得50
10秒前
SHAO应助随性随缘随命采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
努力的研究生完成签到,获得积分10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059