Malware Detection Based on Opcode Sequence and ResNet

操作码 计算机科学 人工智能 恶意软件 支持向量机 分类器(UML) 机器学习 模式识别(心理学) 数据挖掘 计算机硬件 操作系统
作者
Xuetao Zhang,Meng Sun,Jiabao Wang,Jinshuang Wang
出处
期刊:Advances in intelligent systems and computing 卷期号:: 489-502 被引量:7
标识
DOI:10.1007/978-3-030-16946-6_39
摘要

Nowadays, it is challenging for traditional static malware detection method to keep pace with the rapid development of malware variants, therefore machine learning based malware detection approaches begin to flourish. Typically, operation codes disassembled from binary programs were sent to classifiers e.g. SVM and KNN for classification recognition. However, this feature extraction method does not make full use of sequence relations between opcodes, at the same time, the classification model still has less dimensions and lower matching ability. Therefore, a malware detection model based on residual network was proposed in this paper. Firstly, the model extracts the opcode sequences using the disassembler. To improve the vector's expressibility of opcodes, Word2Vec strategy was used in the representation of opcodes, and word vector representations of opcodes were also optimized in the process of training iteration. Unfortunately, the overlapping opcode matrix and convolution operation results in information redundancies. To overcome this problem, a method of downsampling to organize opcode sequences into opcode matrix was adopted, which can effectively control the time and space complexity. In order to improve the classification ability of the model, a classifier with more layers and cross-layer connection was proposed to match malicious code in more dimensions based on ResNet. The experiment shows that the malware classification accuracy in this paper is 98.2%. At the same time, the processing time consumption comparing with traditional classifiers is still negligible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇契完成签到,获得积分10
刚刚
1秒前
2秒前
4秒前
6秒前
6秒前
梦_筱彩完成签到 ,获得积分10
6秒前
Revision发布了新的文献求助10
7秒前
9秒前
CAOHOU应助Intro采纳,获得10
11秒前
11秒前
12秒前
Jasper应助yuan采纳,获得10
13秒前
13秒前
15秒前
Revision完成签到,获得积分10
16秒前
adbr完成签到,获得积分10
16秒前
17秒前
杨振发布了新的文献求助10
18秒前
FashionBoy应助风趣的惜天采纳,获得10
18秒前
常常嘻嘻发布了新的文献求助10
18秒前
刘十一发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
一杯沧海完成签到 ,获得积分10
22秒前
22秒前
qizhang发布了新的文献求助10
23秒前
24秒前
qxxxxx应助ZHY采纳,获得30
24秒前
z_发布了新的文献求助20
25秒前
闰土完成签到 ,获得积分10
25秒前
书羽完成签到,获得积分10
26秒前
26秒前
doomedQL完成签到,获得积分10
27秒前
27秒前
28秒前
星辰大海应助虚心的西牛采纳,获得10
28秒前
宋呵呵完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
wanci应助xci采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734970
求助须知:如何正确求助?哪些是违规求助? 5357733
关于积分的说明 15328255
捐赠科研通 4879430
什么是DOI,文献DOI怎么找? 2621934
邀请新用户注册赠送积分活动 1571143
关于科研通互助平台的介绍 1527931