Malware Detection Based on Opcode Sequence and ResNet

操作码 计算机科学 人工智能 恶意软件 支持向量机 分类器(UML) 机器学习 模式识别(心理学) 数据挖掘 操作系统 计算机硬件
作者
Xuetao Zhang,Meng Sun,Jiabao Wang,Jinshuang Wang
出处
期刊:Advances in intelligent systems and computing 卷期号:: 489-502 被引量:7
标识
DOI:10.1007/978-3-030-16946-6_39
摘要

Nowadays, it is challenging for traditional static malware detection method to keep pace with the rapid development of malware variants, therefore machine learning based malware detection approaches begin to flourish. Typically, operation codes disassembled from binary programs were sent to classifiers e.g. SVM and KNN for classification recognition. However, this feature extraction method does not make full use of sequence relations between opcodes, at the same time, the classification model still has less dimensions and lower matching ability. Therefore, a malware detection model based on residual network was proposed in this paper. Firstly, the model extracts the opcode sequences using the disassembler. To improve the vector's expressibility of opcodes, Word2Vec strategy was used in the representation of opcodes, and word vector representations of opcodes were also optimized in the process of training iteration. Unfortunately, the overlapping opcode matrix and convolution operation results in information redundancies. To overcome this problem, a method of downsampling to organize opcode sequences into opcode matrix was adopted, which can effectively control the time and space complexity. In order to improve the classification ability of the model, a classifier with more layers and cross-layer connection was proposed to match malicious code in more dimensions based on ResNet. The experiment shows that the malware classification accuracy in this paper is 98.2%. At the same time, the processing time consumption comparing with traditional classifiers is still negligible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅的斑马完成签到,获得积分10
1秒前
慕青应助nao采纳,获得10
1秒前
小萌新发布了新的文献求助10
2秒前
HonamC完成签到,获得积分10
2秒前
2秒前
氿瑛完成签到,获得积分10
2秒前
笨小孩发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
随意了么完成签到,获得积分10
5秒前
魔法披风发布了新的文献求助10
7秒前
科研通AI6应助归海若采纳,获得10
9秒前
9秒前
化龙完成签到,获得积分10
9秒前
啊咧发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
拯救香松完成签到,获得积分10
10秒前
氿瑛发布了新的文献求助10
10秒前
10秒前
10秒前
笛子完成签到,获得积分10
12秒前
13秒前
szcyxzh完成签到,获得积分10
13秒前
13秒前
魔法披风完成签到,获得积分10
14秒前
14秒前
恭喜发财发布了新的文献求助10
14秒前
Wang发布了新的文献求助10
15秒前
浮游应助开朗的雁采纳,获得10
16秒前
乆乆乆乆发布了新的文献求助10
17秒前
万能图书馆应助小白采纳,获得10
18秒前
3220211483发布了新的文献求助10
18秒前
Ava应助害怕的问儿采纳,获得10
19秒前
丰富芷蕊完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
Wang完成签到,获得积分10
22秒前
自强不息完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883732
求助须知:如何正确求助?哪些是违规求助? 4169161
关于积分的说明 12936110
捐赠科研通 3929503
什么是DOI,文献DOI怎么找? 2156155
邀请新用户注册赠送积分活动 1174556
关于科研通互助平台的介绍 1079303