亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Malware Detection Based on Opcode Sequence and ResNet

操作码 计算机科学 人工智能 恶意软件 支持向量机 分类器(UML) 机器学习 模式识别(心理学) 数据挖掘 计算机硬件 操作系统
作者
Xuetao Zhang,Meng Sun,Jiabao Wang,Jinshuang Wang
出处
期刊:Advances in intelligent systems and computing 卷期号:: 489-502 被引量:7
标识
DOI:10.1007/978-3-030-16946-6_39
摘要

Nowadays, it is challenging for traditional static malware detection method to keep pace with the rapid development of malware variants, therefore machine learning based malware detection approaches begin to flourish. Typically, operation codes disassembled from binary programs were sent to classifiers e.g. SVM and KNN for classification recognition. However, this feature extraction method does not make full use of sequence relations between opcodes, at the same time, the classification model still has less dimensions and lower matching ability. Therefore, a malware detection model based on residual network was proposed in this paper. Firstly, the model extracts the opcode sequences using the disassembler. To improve the vector's expressibility of opcodes, Word2Vec strategy was used in the representation of opcodes, and word vector representations of opcodes were also optimized in the process of training iteration. Unfortunately, the overlapping opcode matrix and convolution operation results in information redundancies. To overcome this problem, a method of downsampling to organize opcode sequences into opcode matrix was adopted, which can effectively control the time and space complexity. In order to improve the classification ability of the model, a classifier with more layers and cross-layer connection was proposed to match malicious code in more dimensions based on ResNet. The experiment shows that the malware classification accuracy in this paper is 98.2%. At the same time, the processing time consumption comparing with traditional classifiers is still negligible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不能随便发布了新的文献求助10
10秒前
14秒前
14秒前
白日梦想家完成签到 ,获得积分10
17秒前
yanifang发布了新的文献求助10
19秒前
顾矜应助就123采纳,获得10
20秒前
年轻真好啊完成签到,获得积分10
25秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
大个应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
花陵完成签到 ,获得积分10
31秒前
31秒前
xhlxhl完成签到,获得积分10
39秒前
41秒前
kk发布了新的文献求助10
45秒前
林强完成签到,获得积分10
45秒前
Liuxiaoliu完成签到 ,获得积分10
52秒前
55秒前
1分钟前
swan完成签到 ,获得积分10
1分钟前
xuyan发布了新的文献求助30
1分钟前
1分钟前
1分钟前
五博发布了新的文献求助10
1分钟前
kk完成签到,获得积分10
1分钟前
TangSEU发布了新的文献求助10
1分钟前
xiaohan,JIA完成签到,获得积分10
1分钟前
苗龙伟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
爆米花应助TangSEU采纳,获得10
1分钟前
chen发布了新的文献求助10
1分钟前
1分钟前
liruixin发布了新的文献求助10
1分钟前
氯雷他定发布了新的文献求助10
1分钟前
1分钟前
氯雷他定完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723397
求助须知:如何正确求助?哪些是违规求助? 5276618
关于积分的说明 15298565
捐赠科研通 4871890
什么是DOI,文献DOI怎么找? 2616321
邀请新用户注册赠送积分活动 1566167
关于科研通互助平台的介绍 1523041