亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Malware Detection Based on Opcode Sequence and ResNet

操作码 计算机科学 人工智能 恶意软件 支持向量机 分类器(UML) 机器学习 模式识别(心理学) 数据挖掘 操作系统 计算机硬件
作者
Xuetao Zhang,Meng Sun,Jiabao Wang,Jinshuang Wang
出处
期刊:Advances in intelligent systems and computing 卷期号:: 489-502 被引量:7
标识
DOI:10.1007/978-3-030-16946-6_39
摘要

Nowadays, it is challenging for traditional static malware detection method to keep pace with the rapid development of malware variants, therefore machine learning based malware detection approaches begin to flourish. Typically, operation codes disassembled from binary programs were sent to classifiers e.g. SVM and KNN for classification recognition. However, this feature extraction method does not make full use of sequence relations between opcodes, at the same time, the classification model still has less dimensions and lower matching ability. Therefore, a malware detection model based on residual network was proposed in this paper. Firstly, the model extracts the opcode sequences using the disassembler. To improve the vector's expressibility of opcodes, Word2Vec strategy was used in the representation of opcodes, and word vector representations of opcodes were also optimized in the process of training iteration. Unfortunately, the overlapping opcode matrix and convolution operation results in information redundancies. To overcome this problem, a method of downsampling to organize opcode sequences into opcode matrix was adopted, which can effectively control the time and space complexity. In order to improve the classification ability of the model, a classifier with more layers and cross-layer connection was proposed to match malicious code in more dimensions based on ResNet. The experiment shows that the malware classification accuracy in this paper is 98.2%. At the same time, the processing time consumption comparing with traditional classifiers is still negligible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火的信仰发布了新的文献求助10
2秒前
郦初蓝发布了新的文献求助10
3秒前
哩哩完成签到 ,获得积分10
3秒前
11秒前
吴洲凤发布了新的文献求助10
16秒前
儒雅凡桃发布了新的文献求助10
16秒前
彧辰完成签到 ,获得积分10
17秒前
19秒前
天宇南神发布了新的文献求助10
22秒前
与风为伴发布了新的文献求助50
23秒前
23秒前
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
bkagyin应助吴洲凤采纳,获得10
25秒前
26秒前
Cao完成签到 ,获得积分10
26秒前
29秒前
小张完成签到 ,获得积分10
29秒前
35秒前
43秒前
sdfdzhang完成签到 ,获得积分0
45秒前
konosuba完成签到,获得积分0
47秒前
秋作完成签到,获得积分10
50秒前
51秒前
TIDUS完成签到,获得积分10
52秒前
甄文超发布了新的文献求助10
56秒前
爆米花应助山楂采纳,获得30
58秒前
a36380382完成签到,获得积分10
59秒前
这学真难读下去完成签到,获得积分10
1分钟前
yingxinfu完成签到 ,获得积分10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Jiang发布了新的文献求助80
1分钟前
山楂发布了新的文献求助30
1分钟前
anna完成签到,获得积分10
1分钟前
1分钟前
anna发布了新的文献求助10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454743
求助须知:如何正确求助?哪些是违规求助? 4562127
关于积分的说明 14284753
捐赠科研通 4485948
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447784
关于科研通互助平台的介绍 1422985