Malware Detection Based on Opcode Sequence and ResNet

操作码 计算机科学 人工智能 恶意软件 支持向量机 分类器(UML) 机器学习 模式识别(心理学) 数据挖掘 计算机硬件 操作系统
作者
Xuetao Zhang,Meng Sun,Jiabao Wang,Jinshuang Wang
出处
期刊:Advances in intelligent systems and computing 卷期号:: 489-502 被引量:7
标识
DOI:10.1007/978-3-030-16946-6_39
摘要

Nowadays, it is challenging for traditional static malware detection method to keep pace with the rapid development of malware variants, therefore machine learning based malware detection approaches begin to flourish. Typically, operation codes disassembled from binary programs were sent to classifiers e.g. SVM and KNN for classification recognition. However, this feature extraction method does not make full use of sequence relations between opcodes, at the same time, the classification model still has less dimensions and lower matching ability. Therefore, a malware detection model based on residual network was proposed in this paper. Firstly, the model extracts the opcode sequences using the disassembler. To improve the vector's expressibility of opcodes, Word2Vec strategy was used in the representation of opcodes, and word vector representations of opcodes were also optimized in the process of training iteration. Unfortunately, the overlapping opcode matrix and convolution operation results in information redundancies. To overcome this problem, a method of downsampling to organize opcode sequences into opcode matrix was adopted, which can effectively control the time and space complexity. In order to improve the classification ability of the model, a classifier with more layers and cross-layer connection was proposed to match malicious code in more dimensions based on ResNet. The experiment shows that the malware classification accuracy in this paper is 98.2%. At the same time, the processing time consumption comparing with traditional classifiers is still negligible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgg发布了新的文献求助10
刚刚
清秀的月亮完成签到,获得积分10
刚刚
墨鱼烩饭完成签到,获得积分10
1秒前
cangmingzi完成签到,获得积分10
2秒前
xiaowang完成签到,获得积分10
2秒前
耽书是宿缘完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
秋秋完成签到,获得积分10
6秒前
飛03完成签到 ,获得积分10
7秒前
8秒前
机灵语雪完成签到,获得积分10
8秒前
9秒前
小黎发布了新的文献求助10
9秒前
10秒前
hgg完成签到,获得积分10
10秒前
10秒前
晨曦应助酷炫笑翠采纳,获得10
11秒前
FJ发布了新的文献求助10
11秒前
失眠毛衣完成签到,获得积分10
11秒前
何昆朋发布了新的文献求助10
12秒前
13秒前
兔宝宝发布了新的文献求助10
13秒前
科研通AI6.1应助keyan采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
16秒前
Pull发布了新的文献求助10
16秒前
Annie发布了新的文献求助10
17秒前
学霸业完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
CipherSage应助兔宝宝采纳,获得10
21秒前
21秒前
个性枕头完成签到 ,获得积分10
23秒前
萱萱完成签到,获得积分10
24秒前
梦在彼岸发布了新的文献求助10
24秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742911
求助须知:如何正确求助?哪些是违规求助? 5411336
关于积分的说明 15346296
捐赠科研通 4883960
什么是DOI,文献DOI怎么找? 2625453
邀请新用户注册赠送积分活动 1574294
关于科研通互助平台的介绍 1531234