Malware Detection Based on Opcode Sequence and ResNet

操作码 计算机科学 人工智能 恶意软件 支持向量机 分类器(UML) 机器学习 模式识别(心理学) 数据挖掘 计算机硬件 操作系统
作者
Xuetao Zhang,Meng Sun,Jiabao Wang,Jinshuang Wang
出处
期刊:Advances in intelligent systems and computing 卷期号:: 489-502 被引量:7
标识
DOI:10.1007/978-3-030-16946-6_39
摘要

Nowadays, it is challenging for traditional static malware detection method to keep pace with the rapid development of malware variants, therefore machine learning based malware detection approaches begin to flourish. Typically, operation codes disassembled from binary programs were sent to classifiers e.g. SVM and KNN for classification recognition. However, this feature extraction method does not make full use of sequence relations between opcodes, at the same time, the classification model still has less dimensions and lower matching ability. Therefore, a malware detection model based on residual network was proposed in this paper. Firstly, the model extracts the opcode sequences using the disassembler. To improve the vector's expressibility of opcodes, Word2Vec strategy was used in the representation of opcodes, and word vector representations of opcodes were also optimized in the process of training iteration. Unfortunately, the overlapping opcode matrix and convolution operation results in information redundancies. To overcome this problem, a method of downsampling to organize opcode sequences into opcode matrix was adopted, which can effectively control the time and space complexity. In order to improve the classification ability of the model, a classifier with more layers and cross-layer connection was proposed to match malicious code in more dimensions based on ResNet. The experiment shows that the malware classification accuracy in this paper is 98.2%. At the same time, the processing time consumption comparing with traditional classifiers is still negligible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凤羽发布了新的文献求助10
1秒前
灵巧听露发布了新的文献求助10
1秒前
可爱的函函应助猫猫无敌采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
5秒前
爆米花应助刁弘睿采纳,获得10
5秒前
5秒前
5秒前
缥缈海云完成签到,获得积分10
5秒前
6秒前
斯文败类应助沙场秋点兵采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
8秒前
无辜问玉发布了新的文献求助10
8秒前
8秒前
9秒前
谨慎乐安发布了新的文献求助10
9秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
缥缈海云发布了新的文献求助10
12秒前
mylaodao发布了新的文献求助10
12秒前
13秒前
chen完成签到,获得积分10
14秒前
拾贰月发布了新的文献求助10
14秒前
俊杰完成签到,获得积分10
15秒前
阿菜完成签到,获得积分10
15秒前
wanghao完成签到,获得积分20
15秒前
善学以致用应助songjiatian采纳,获得10
16秒前
17秒前
17秒前
善学以致用应助追忆淮采纳,获得10
18秒前
Hello应助靓丽凝海采纳,获得10
18秒前
18秒前
毛笑冉完成签到,获得积分10
18秒前
fine发布了新的文献求助10
18秒前
19秒前
无辜问玉完成签到,获得积分10
20秒前
20秒前
CodeCraft应助SJW采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425