沙丁胺醇
电机端板
突触后电位
神经肌肉接头
乙酰胆碱酯酶
生物
乙酰胆碱受体
先天性肌无力综合征
神经肌肉传递
杜氏肌营养不良
突触裂
内科学
内分泌学
重症肌无力
药理学
神经科学
医学
受体
神经递质
中枢神经系统
免疫学
生物化学
酶
哮喘
作者
Grace McMacken,Sally Spendiff,Roger Whittaker,Emily O’Connor,Rachel Howarth,Veronika Boczonadi,Rita Horvath,Clarke R. Slater,Hanns Lochmüller
摘要
Abstract The β-adrenergic agonists salbutamol and ephedrine have proven to be effective as therapies for human disorders of the neuromuscular junction, in particular many subsets of congenital myasthenic syndromes. However, the mechanisms underlying this clinical benefit are unknown and improved understanding of the effect of adrenergic signalling on the neuromuscular junction is essential to facilitate the development of more targeted therapies. Here, we investigated the effect of salbutamol treatment on the neuromuscular junction in the ColQ deficient mouse, a model of end-plate acetylcholinesterase deficiency. ColQ−/− mice received 7 weeks of daily salbutamol injection, and the effect on muscle strength and neuromuscular junction morphology was analysed. We show that salbutamol leads to a gradual improvement in muscle strength in ColQ−/− mice. In addition, the neuromuscular junctions of salbutamol treated mice showed significant improvements in several postsynaptic morphological defects, including increased synaptic area, acetylcholine receptor area and density, and extent of postjunctional folds. These changes occurred without alterations in skeletal muscle fibre size or type. These findings suggest that β-adrenergic agonists lead to functional benefit in the ColQ−/− mouse and to long-term structural changes at the neuromuscular junction. These effects are primarily at the postsynaptic membrane and may lead to enhanced neuromuscular transmission.
科研通智能强力驱动
Strongly Powered by AbleSci AI