Data Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global Burden of Disease Assessment

环境科学 人口 空气污染 环境卫生 疾病负担 地理 统计 自然地理学 气候学 医学 气象学 环境保护 数学 化学 有机化学 地质学
作者
Gavin Shaddick,Matthew L. Thomas,Heresh Amini,David M. Broday,Aaron Cohen,Joseph Frostad,Amelia Green,Sophie Gumy,Yang Liu,Randall V. Martin,Annette Prüss‐Üstün,Daniel Simpson,Aaron van Donkelaar,Michael Bräuer
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:52 (16): 9069-9078 被引量:186
标识
DOI:10.1021/acs.est.8b02864
摘要

Air pollution is a leading global disease risk factor. Tracking progress (e.g., for Sustainable Development Goals) requires accurate, spatially resolved, routinely updated exposure estimates. A Bayesian hierarchical model was developed to estimate annual average fine particle (PM2.5) concentrations at 0.1° × 0.1° spatial resolution globally for 2010-2016. The model incorporated spatially varying relationships between 6003 ground measurements from 117 countries, satellite-based estimates, and other predictors. Model coefficients indicated larger contributions from satellite-based estimates in countries with low monitor density. Within and out-of-sample cross-validation indicated improved predictions of ground measurements compared to previous (Global Burden of Disease 2013) estimates (increased within-sample R2 from 0.64 to 0.91, reduced out-of-sample, global population-weighted root mean squared error from 23 μg/m3 to 12 μg/m3). In 2016, 95% of the world's population lived in areas where ambient PM2.5 levels exceeded the World Health Organization 10 μg/m3 (annual average) guideline; 58% resided in areas above the 35 μg/m3 Interim Target-1. Global population-weighted PM2.5 concentrations were 18% higher in 2016 (51.1 μg/m3) than in 2010 (43.2 μg/m3), reflecting in particular increases in populous South Asian countries and from Saharan dust transported to West Africa. Concentrations in China were high (2016 population-weighted mean: 56.4 μg/m3) but stable during this period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LH完成签到,获得积分10
1秒前
1秒前
2秒前
打打应助kiki采纳,获得30
3秒前
4秒前
张虹完成签到,获得积分10
5秒前
情怀应助端庄的雪青采纳,获得10
5秒前
bkagyin应助LH采纳,获得10
5秒前
乐乐应助johnzsin采纳,获得10
5秒前
小左完成签到,获得积分10
7秒前
邹醉蓝完成签到,获得积分0
7秒前
小马哥发布了新的文献求助10
7秒前
可爱的函函应助jingcheng采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
12秒前
图图完成签到 ,获得积分10
12秒前
闪闪发布了新的文献求助10
13秒前
Ellen完成签到,获得积分10
13秒前
闵卷完成签到,获得积分10
14秒前
14秒前
动人的乾完成签到 ,获得积分20
15秒前
15秒前
15秒前
15秒前
大模型应助bab采纳,获得10
16秒前
johnzsin发布了新的文献求助10
17秒前
乐乐应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
19秒前
Mic应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
文艺的懿应助科研通管家采纳,获得10
19秒前
Mic应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430724
求助须知:如何正确求助?哪些是违规求助? 4543775
关于积分的说明 14189271
捐赠科研通 4462224
什么是DOI,文献DOI怎么找? 2446482
邀请新用户注册赠送积分活动 1437844
关于科研通互助平台的介绍 1414544