碳纳米管
材料科学
石墨烯
集电器
锂(药物)
碳纤维
纳米技术
电极
化学工程
复合材料
复合数
化学
医学
工程类
内分泌学
物理化学
电解质
作者
Yu-Yun Hsieh,Yanbo Fang,Jeremy Daum,Sathya Narayan Kanakaraj,Guangqi Zhang,Siddharth Mishra,Seyram Gbordzoe,Vesselin Shanov
出处
期刊:Carbon
[Elsevier]
日期:2019-04-01
卷期号:145: 677-689
被引量:35
标识
DOI:10.1016/j.carbon.2019.01.055
摘要
Carbon-based materials have been proposed as current collectors for lithium ion batteries (LIBs), however few of them have successfully integrated sp2 carbon and reach in sp3 carbon into one monolithic structure: in a way that sp2 carbon is responsible for electron transfer and sp3 carbon is capable for a high loading of active materials. Here we report an in-situ growth of a nitrogen-doped carbon nanotube (NCNT) on a three-dimensional (3D) graphene network. The proposed structure (NCNT-3DG) is a bio-inspired nanomaterial with a design of a “natural forest”. The in-situ growth of NCNT on 3D graphene guarantees a fast electron transfer between NCNT and 3DG. The hydrophilic nature of NCNTs insures a high loading of the active materials, such as Li4Ti5O12 (LTO). The designed LTO-NCNT-3DG electrode achieves an active materials loading of 74 wt% of the overall electrode mass, compared to about 20 wt% on traditional metal foil and 55 wt% on other reported carbon current collectors. Such a hybrid electrode delivers a higher specific capacity of 158 mAh g−1 at 5C. The specific capacity retains 94% after 2000 cycles at 10 C. The proposed NCNT-3DG current collector is a novel strategy for fast charging LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI