Reporting of artificial intelligence prediction models

计算机科学 数字健康 斯科普斯 人工智能 心血管健康 临床决策支持系统 电子健康 医疗保健 疾病 数据科学 机器学习 医学 梅德林 决策支持系统 病理 政治学 经济 法学 经济增长
作者
Gary S. Collins,Karel G.M. Moons
出处
期刊:The Lancet [Elsevier]
卷期号:393 (10181): 1577-1579 被引量:562
标识
DOI:10.1016/s0140-6736(19)30037-6
摘要

Data-driven technologies that form the basis of the digital health-care revolution provide potentially important opportunities to deliver improvements in individual care and to advance innovation in medical research. Digital health technologies include mobile devices and health apps (m-health), e-health technology, and intelligent monitoring. Behind the digital health revolution are also methodological advancements using artificial intelligence and machine learning techniques. Artificial intelligence, which encompasses machine learning, is the scientific discipline that uses computer algorithms to learn from data, to help identify patterns in data, and make predictions. A key feature underpinning the excitement behind artificial intelligence and machine learning is their potential to analyse large and complex data structures to create prediction models that personalise and improve diagnosis, prognosis, monitoring, and administration of treatments, with the aim of improving individual health outcomes. Prediction models to support clinical decision making have existed for decades, and these include well known tools such as the Framingham Risk Score, 1 Wilson PW D'Agostino RB Levy D Belanger AM Silbershatz H Kannel WB Prediction of coronary heart disease using risk factor categories. Circulation. 1998; 97: 1837-1847 Crossref PubMed Scopus (7437) Google Scholar QRISK3, 2 Hippisley-Cox J Coupland C Brindle P Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017; 357: j2099 Crossref PubMed Scopus (622) Google Scholar Model for End-stage Liver Disease, 3 Malinchoc M Kamath PS Gordon FD Peine CJ Rank J ter Borg PC A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000; 31: 864-871 Crossref PubMed Scopus (2120) Google Scholar ABCD 2 Hippisley-Cox J Coupland C Brindle P Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017; 357: j2099 Crossref PubMed Scopus (622) Google Scholar score, 4 Johnston SC Rothwell PM Nguyen-Huynh MN et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet. 2007; 369: 283-292 Summary Full Text Full Text PDF PubMed Scopus (1037) Google Scholar and the Nottingham Prognostic Index. 5 van Gorp MJ Steyerberg EW van der Graaf Y Decision guidelines for prophylactic replacement of Bjork-Shiley convexo-concave heart valves: impact on clinical practice. Circulation. 2004; 109: 2092-2096 Crossref PubMed Scopus (14) Google Scholar Health-care professionals, medical researchers, policy makers, guideline developers, patients, and members of the general public are all potential users of prediction models. The number of prediction model studies is increasing rapidly, with hundreds of different models being developed for some of the same targeted populations and outcomes. 6 Damen JAAG Hooft L Schuit E et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016; 353: i2416 Crossref PubMed Scopus (427) Google Scholar , 7 Tangri N Kitsios GD Inker LA et al. Risk prediction models for patients with chronic kidney disease: a systematic review. Ann Intern Med. 2013; 158: 596-603 Crossref PubMed Scopus (134) Google Scholar Extension of the CONSORT and SPIRIT statementsWe read with great interest the proposal made by Gary Collins and Karel Moons1 to develop a version of the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement that is specific to machine learning (ML), to be known as TRIPOD-ML.2 We agree that the understandable excitement around ML-enabled technologies should not overrule the need for robust scientific evaluation, and ML prediction model studies should adopt established guidance for reporting. Full-Text PDF Walking the tightrope of artificial intelligence guidelines in clinical practiceOver the past few months, there has been a wave of digital health guidelines and whitepapers issued by regulators, institutes, and organisations worldwide. In the field of artificial intelligence (AI), EU guidelines, published in April, promote the development of trustworthy AI across all disciplines, while a US Food and Drug Administration (FDA) whitepaper proposes a regulatory framework for constantly developing software in health care. Guidelines from the National Institution of Health and Care Excellence (NICE) tackle the level of evidence required for a new digital health intervention, and NHSX and Public Health England have both reported their intention to produce their own AI guidelines. Full-Text PDF Open Access
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助bxw采纳,获得10
刚刚
李爱国应助自觉士萧采纳,获得10
刚刚
1秒前
2秒前
敢超发布了新的文献求助10
2秒前
无聊先知发布了新的文献求助10
3秒前
4秒前
edtaa发布了新的文献求助30
4秒前
zz完成签到 ,获得积分10
5秒前
科研通AI5应助向聿采纳,获得10
5秒前
研新发布了新的文献求助10
5秒前
沉默的玻璃猪完成签到,获得积分10
6秒前
领导范儿应助Air采纳,获得10
6秒前
6秒前
Lucy完成签到,获得积分10
6秒前
cxt发布了新的文献求助10
7秒前
7秒前
8秒前
大个应助康康采纳,获得30
8秒前
搜集达人应助jjjwln采纳,获得10
10秒前
maox1aoxin应助敬老院N号采纳,获得40
10秒前
秋白华落霜完成签到,获得积分10
10秒前
随风完成签到,获得积分10
10秒前
万能图书馆应助念念采纳,获得30
10秒前
11秒前
聪慧千亦发布了新的文献求助10
11秒前
GGBO应助小欣6116采纳,获得10
11秒前
hahatosky完成签到,获得积分10
11秒前
2393843435发布了新的文献求助10
11秒前
葡萄发布了新的文献求助10
11秒前
12秒前
12秒前
勤劳冰夏完成签到 ,获得积分10
12秒前
科研通AI5应助tufu采纳,获得10
13秒前
Faine完成签到 ,获得积分10
13秒前
DDDD应助CC采纳,获得30
13秒前
Jane完成签到,获得积分10
13秒前
白菜发布了新的文献求助10
13秒前
榜一大哥的负担完成签到 ,获得积分10
13秒前
冷酷沛柔发布了新的文献求助20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199