Reporting of artificial intelligence prediction models

计算机科学 数字健康 斯科普斯 人工智能 心血管健康 临床决策支持系统 电子健康 医疗保健 疾病 数据科学 机器学习 医学 梅德林 决策支持系统 病理 政治学 经济 法学 经济增长
作者
Gary S. Collins,Karel G.M. Moons
出处
期刊:The Lancet [Elsevier BV]
卷期号:393 (10181): 1577-1579 被引量:572
标识
DOI:10.1016/s0140-6736(19)30037-6
摘要

Data-driven technologies that form the basis of the digital health-care revolution provide potentially important opportunities to deliver improvements in individual care and to advance innovation in medical research. Digital health technologies include mobile devices and health apps (m-health), e-health technology, and intelligent monitoring. Behind the digital health revolution are also methodological advancements using artificial intelligence and machine learning techniques. Artificial intelligence, which encompasses machine learning, is the scientific discipline that uses computer algorithms to learn from data, to help identify patterns in data, and make predictions. A key feature underpinning the excitement behind artificial intelligence and machine learning is their potential to analyse large and complex data structures to create prediction models that personalise and improve diagnosis, prognosis, monitoring, and administration of treatments, with the aim of improving individual health outcomes. Prediction models to support clinical decision making have existed for decades, and these include well known tools such as the Framingham Risk Score, 1 Wilson PW D'Agostino RB Levy D Belanger AM Silbershatz H Kannel WB Prediction of coronary heart disease using risk factor categories. Circulation. 1998; 97: 1837-1847 Crossref PubMed Scopus (7437) Google Scholar QRISK3, 2 Hippisley-Cox J Coupland C Brindle P Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017; 357: j2099 Crossref PubMed Scopus (622) Google Scholar Model for End-stage Liver Disease, 3 Malinchoc M Kamath PS Gordon FD Peine CJ Rank J ter Borg PC A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000; 31: 864-871 Crossref PubMed Scopus (2120) Google Scholar ABCD 2 Hippisley-Cox J Coupland C Brindle P Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017; 357: j2099 Crossref PubMed Scopus (622) Google Scholar score, 4 Johnston SC Rothwell PM Nguyen-Huynh MN et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet. 2007; 369: 283-292 Summary Full Text Full Text PDF PubMed Scopus (1037) Google Scholar and the Nottingham Prognostic Index. 5 van Gorp MJ Steyerberg EW van der Graaf Y Decision guidelines for prophylactic replacement of Bjork-Shiley convexo-concave heart valves: impact on clinical practice. Circulation. 2004; 109: 2092-2096 Crossref PubMed Scopus (14) Google Scholar Health-care professionals, medical researchers, policy makers, guideline developers, patients, and members of the general public are all potential users of prediction models. The number of prediction model studies is increasing rapidly, with hundreds of different models being developed for some of the same targeted populations and outcomes. 6 Damen JAAG Hooft L Schuit E et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016; 353: i2416 Crossref PubMed Scopus (427) Google Scholar , 7 Tangri N Kitsios GD Inker LA et al. Risk prediction models for patients with chronic kidney disease: a systematic review. Ann Intern Med. 2013; 158: 596-603 Crossref PubMed Scopus (134) Google Scholar Extension of the CONSORT and SPIRIT statementsWe read with great interest the proposal made by Gary Collins and Karel Moons1 to develop a version of the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement that is specific to machine learning (ML), to be known as TRIPOD-ML.2 We agree that the understandable excitement around ML-enabled technologies should not overrule the need for robust scientific evaluation, and ML prediction model studies should adopt established guidance for reporting. Full-Text PDF Walking the tightrope of artificial intelligence guidelines in clinical practiceOver the past few months, there has been a wave of digital health guidelines and whitepapers issued by regulators, institutes, and organisations worldwide. In the field of artificial intelligence (AI), EU guidelines, published in April, promote the development of trustworthy AI across all disciplines, while a US Food and Drug Administration (FDA) whitepaper proposes a regulatory framework for constantly developing software in health care. Guidelines from the National Institution of Health and Care Excellence (NICE) tackle the level of evidence required for a new digital health intervention, and NHSX and Public Health England have both reported their intention to produce their own AI guidelines. Full-Text PDF Open Access
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
siwen完成签到,获得积分10
2秒前
2秒前
2秒前
xywneg_cn完成签到,获得积分10
2秒前
可乐不加冰完成签到,获得积分10
2秒前
3秒前
3秒前
小十七果发布了新的文献求助10
3秒前
小董完成签到,获得积分20
3秒前
Ava应助科研狗采纳,获得10
3秒前
中中中完成签到,获得积分10
4秒前
英俊延恶完成签到,获得积分10
4秒前
honey完成签到,获得积分10
5秒前
5秒前
5秒前
风趣的绮菱完成签到,获得积分10
5秒前
6秒前
爱吃的肥虾完成签到,获得积分10
6秒前
6秒前
JAYZHANG完成签到,获得积分10
6秒前
小臭屁发布了新的文献求助10
6秒前
德鲁大叔完成签到,获得积分10
6秒前
GE葛完成签到,获得积分10
6秒前
史超发布了新的文献求助10
7秒前
Linda琳完成签到,获得积分10
7秒前
潇洒的冷玉完成签到 ,获得积分10
8秒前
sunlihao完成签到,获得积分10
8秒前
所所应助dada采纳,获得10
8秒前
梦nv孩发布了新的文献求助10
8秒前
明理夏槐发布了新的文献求助10
9秒前
一定长发布了新的文献求助20
9秒前
9秒前
研友_5Z4ZA5完成签到,获得积分10
9秒前
忧伤的书白完成签到,获得积分10
9秒前
完美世界应助科研通管家采纳,获得30
10秒前
大模型应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得30
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479