清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Reporting of artificial intelligence prediction models

计算机科学 数字健康 斯科普斯 人工智能 心血管健康 临床决策支持系统 电子健康 医疗保健 疾病 数据科学 机器学习 医学 梅德林 决策支持系统 病理 政治学 经济 法学 经济增长
作者
Gary S. Collins,Karel G.M. Moons
出处
期刊:The Lancet [Elsevier]
卷期号:393 (10181): 1577-1579 被引量:591
标识
DOI:10.1016/s0140-6736(19)30037-6
摘要

Data-driven technologies that form the basis of the digital health-care revolution provide potentially important opportunities to deliver improvements in individual care and to advance innovation in medical research. Digital health technologies include mobile devices and health apps (m-health), e-health technology, and intelligent monitoring. Behind the digital health revolution are also methodological advancements using artificial intelligence and machine learning techniques. Artificial intelligence, which encompasses machine learning, is the scientific discipline that uses computer algorithms to learn from data, to help identify patterns in data, and make predictions. A key feature underpinning the excitement behind artificial intelligence and machine learning is their potential to analyse large and complex data structures to create prediction models that personalise and improve diagnosis, prognosis, monitoring, and administration of treatments, with the aim of improving individual health outcomes. Prediction models to support clinical decision making have existed for decades, and these include well known tools such as the Framingham Risk Score, 1 Wilson PW D'Agostino RB Levy D Belanger AM Silbershatz H Kannel WB Prediction of coronary heart disease using risk factor categories. Circulation. 1998; 97: 1837-1847 Crossref PubMed Scopus (7437) Google Scholar QRISK3, 2 Hippisley-Cox J Coupland C Brindle P Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017; 357: j2099 Crossref PubMed Scopus (622) Google Scholar Model for End-stage Liver Disease, 3 Malinchoc M Kamath PS Gordon FD Peine CJ Rank J ter Borg PC A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000; 31: 864-871 Crossref PubMed Scopus (2120) Google Scholar ABCD 2 Hippisley-Cox J Coupland C Brindle P Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017; 357: j2099 Crossref PubMed Scopus (622) Google Scholar score, 4 Johnston SC Rothwell PM Nguyen-Huynh MN et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet. 2007; 369: 283-292 Summary Full Text Full Text PDF PubMed Scopus (1037) Google Scholar and the Nottingham Prognostic Index. 5 van Gorp MJ Steyerberg EW van der Graaf Y Decision guidelines for prophylactic replacement of Bjork-Shiley convexo-concave heart valves: impact on clinical practice. Circulation. 2004; 109: 2092-2096 Crossref PubMed Scopus (14) Google Scholar Health-care professionals, medical researchers, policy makers, guideline developers, patients, and members of the general public are all potential users of prediction models. The number of prediction model studies is increasing rapidly, with hundreds of different models being developed for some of the same targeted populations and outcomes. 6 Damen JAAG Hooft L Schuit E et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016; 353: i2416 Crossref PubMed Scopus (427) Google Scholar , 7 Tangri N Kitsios GD Inker LA et al. Risk prediction models for patients with chronic kidney disease: a systematic review. Ann Intern Med. 2013; 158: 596-603 Crossref PubMed Scopus (134) Google Scholar Extension of the CONSORT and SPIRIT statementsWe read with great interest the proposal made by Gary Collins and Karel Moons1 to develop a version of the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement that is specific to machine learning (ML), to be known as TRIPOD-ML.2 We agree that the understandable excitement around ML-enabled technologies should not overrule the need for robust scientific evaluation, and ML prediction model studies should adopt established guidance for reporting. Full-Text PDF Walking the tightrope of artificial intelligence guidelines in clinical practiceOver the past few months, there has been a wave of digital health guidelines and whitepapers issued by regulators, institutes, and organisations worldwide. In the field of artificial intelligence (AI), EU guidelines, published in April, promote the development of trustworthy AI across all disciplines, while a US Food and Drug Administration (FDA) whitepaper proposes a regulatory framework for constantly developing software in health care. Guidelines from the National Institution of Health and Care Excellence (NICE) tackle the level of evidence required for a new digital health intervention, and NHSX and Public Health England have both reported their intention to produce their own AI guidelines. Full-Text PDF Open Access
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
7秒前
抚琴祛魅完成签到 ,获得积分10
7秒前
shhoing应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
虞无声完成签到,获得积分10
7秒前
shhoing应助科研通管家采纳,获得10
2分钟前
3分钟前
Becky完成签到 ,获得积分10
3分钟前
jfc完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
CJY完成签到 ,获得积分10
4分钟前
Sunny完成签到,获得积分10
4分钟前
lululu完成签到 ,获得积分10
4分钟前
arsenal完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
Ava应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
DianaLee完成签到 ,获得积分10
9分钟前
背后访风完成签到 ,获得积分10
9分钟前
小熊同学完成签到 ,获得积分10
9分钟前
爱思考的小笨笨完成签到,获得积分10
9分钟前
muriel完成签到,获得积分0
10分钟前
如歌完成签到,获得积分10
10分钟前
Ava应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
王火火完成签到 ,获得积分10
10分钟前
毛毛完成签到,获得积分10
10分钟前
chenxiaofang完成签到 ,获得积分10
11分钟前
迷茫的一代完成签到,获得积分10
11分钟前
蝎子莱莱xth完成签到,获得积分10
11分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
11分钟前
Square完成签到,获得积分10
12分钟前
shhoing应助科研通管家采纳,获得10
12分钟前
小马甲应助科研通管家采纳,获得10
12分钟前
12分钟前
npknpk发布了新的文献求助10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561600
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678795
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490557
关于科研通互助平台的介绍 1461590