亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Supervised Machine Learning Algorithms for Evaluation of Solid Lipid Nanoparticles and Particle Size

算法 机器学习 固体脂质纳米粒 计算机科学 人工智能 随机森林 材料科学 纳米颗粒 纳米技术
作者
A. Alper Öztürk,Ayse Bilge Gunduz,Ozan Özışık
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:21 (9): 693-699 被引量:25
标识
DOI:10.2174/1386207322666181218160704
摘要

Aims and Objectives: Solid Lipid Nanoparticles (SLNs) are pharmaceutical delivery systems that have advantages such as controlled drug release, long-term stability etc. Particle Size (PS) is one of the important criteria of SLNs. These factors affect drug release rate, bio-distribution etc. In this study, the formulation of SLNs using high-speed homogenization technique has been evaluated. The main emphasis of the work is to study whether the effect of mixing time and formulation ingredients on PS can be modeled. For this purpose, different machine learning algorithms have been applied and evaluated using the mean absolute error metric. Materials and Methods: SLNs were prepared by high-speed homogenizaton. PS, size distribution and zeta potential measurements were performed on freshly prepared samples. In order to model the formulation of the particles in terms of mixing time and formulation ingredients and evaluate the predictability of PS depending on these parameters, different machine learning algorithms were applied on the prepared dataset and the performances of the algorithms were also evaluated. Results: PS of SLNs obtained was in the range of 263-498nm. The results present that PS of SLNs can be best estimated by decision tree based methods, among which Random Forest has the least mean absolute error value with 0.028. As a result, the estimation of machine learning algorithms demonstrates that particle size can be estimated by both decision rule-based machine learning methods and function fitting machine learning methods. Conclusion: Our findings present that machine learning methods can be highly useful for determining formulation parameters for further research.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
morena发布了新的文献求助10
11秒前
14秒前
SciGPT应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
庞贝完成签到,获得积分10
1分钟前
mia005应助快了科研采纳,获得10
1分钟前
秀丽青枫完成签到 ,获得积分10
1分钟前
CodeCraft应助如意的冰旋采纳,获得10
1分钟前
1分钟前
2分钟前
zho发布了新的文献求助10
2分钟前
mia005完成签到,获得积分10
2分钟前
2分钟前
花花发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Simonking应助科研通管家采纳,获得50
2分钟前
震动的安柏关注了科研通微信公众号
2分钟前
2分钟前
所所应助花花采纳,获得10
2分钟前
2分钟前
SciGPT应助帅气绮露采纳,获得10
2分钟前
sochiyuen发布了新的文献求助10
2分钟前
sochiyuen完成签到,获得积分10
2分钟前
3分钟前
zho发布了新的文献求助10
3分钟前
3分钟前
飞星发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Murphy发布了新的文献求助10
3分钟前
zho发布了新的文献求助10
3分钟前
苗玉完成签到,获得积分10
3分钟前
Murphy完成签到,获得积分10
3分钟前
4分钟前
震动的安柏完成签到,获得积分20
4分钟前
JamesPei应助芝士猕猴桃采纳,获得10
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388415
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793617
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471874
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313