已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cascaded atrous convolution and spatial pyramid pooling for more accurate tumor target segmentation for rectal cancer radiotherapy

放射治疗 棱锥(几何) 卷积(计算机科学) 联营 结直肠癌 分割 医学 癌症 计算机科学 人工智能 核医学 数学 放射科 内科学 几何学 人工神经网络
作者
Kuo Men,Pamela J. Boimel,James Janopaul‐Naylor,Haoyu Zhong,Mi Huang,H. Geng,Chingyun Cheng,Yong Fan,John P. Plastaras,Edgar Ben‐Josef,Ying Xiao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185016-185016 被引量:55
标识
DOI:10.1088/1361-6560/aada6c
摘要

Convolutional neural networks (CNNs) have become the state-of-the-art method for medical segmentation. However, repeated pooling and striding operations reduce the feature resolution, causing loss of detailed information. Additionally, tumors of different patients are of different sizes. Thus, small tumors may be ignored while big tumors may exceed the receptive fields of convolutions. The purpose of this study is to further improve the segmentation accuracy using a novel CNN (named CAC–SPP) with cascaded atrous convolution (CAC) and a spatial pyramid pooling (SPP) module. This work is the first attempt at applying SPP for segmentation in radiotherapy. We improved the network based on ResNet-101 yielding accuracy gains from a greatly increased depth. We added CAC to extract a high-resolution feature map while maintaining large receptive fields. We also adopted a parallel SPP module with different atrous rates to capture the multi-scale features. The performance was compared with the widely adopted U-Net and ResNet-101 with independent segmentation of rectal tumors for two image sets, separately: (1) 70 T2-weighted MR images and (2) 100 planning CT images. The results show that the proposed CAC–SPP outperformed the U-Net and ResNet-101 for both image sets. The Dice similarity coefficient values of CAC–SPP were 0.78 ± 0.08 and 0.85 ± 0.03, respectively, which were higher than those of U-Net (0.70 ± 0.11 and 0.82 ± 0.04) and ResNet-101 (0.76 ± 0.10 and 0.84 ± 0.03). The segmentation speed of CAC–SPP was comparable with ResNet-101, but about 36% faster than U-Net. In conclusion, the proposed CAC–SPP, which could extract high-resolution features with large receptive fields and capture multi-scale context yields, improves the accuracy of segmentation performance for rectal tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助陈龙采纳,获得10
刚刚
熊有鹏完成签到,获得积分20
刚刚
假面绅士发布了新的文献求助10
2秒前
虚心的惮完成签到 ,获得积分10
8秒前
刚刚好关注了科研通微信公众号
9秒前
12秒前
菜菜爸爸完成签到 ,获得积分10
15秒前
15秒前
月亮打盹儿完成签到,获得积分10
16秒前
18秒前
19秒前
鲸鱼完成签到,获得积分20
19秒前
20秒前
本人很懒没有名字完成签到 ,获得积分10
22秒前
鲸鱼发布了新的文献求助10
23秒前
洪东智发布了新的文献求助10
24秒前
珂珂sun发布了新的文献求助20
24秒前
CangGyu完成签到,获得积分10
25秒前
星辰大海应助科研通管家采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得30
26秒前
Jasper应助Avalon采纳,获得10
27秒前
刚刚好发布了新的文献求助10
28秒前
susu完成签到,获得积分10
30秒前
32秒前
33秒前
37秒前
39秒前
朱宸发布了新的文献求助10
42秒前
黄毛虎完成签到 ,获得积分10
43秒前
zz发布了新的文献求助10
45秒前
袁粪到了完成签到 ,获得积分10
45秒前
光之战士完成签到 ,获得积分10
52秒前
Jack完成签到 ,获得积分10
54秒前
宇宙之王宙斯完成签到 ,获得积分10
56秒前
充电宝应助tracer526采纳,获得10
1分钟前
1分钟前
朱宸发布了新的文献求助10
1分钟前
bobo完成签到,获得积分10
1分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130010
求助须知:如何正确求助?哪些是违规求助? 2780834
关于积分的说明 7750228
捐赠科研通 2436057
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570