砷
花帘蛤属
亚砷酸盐
砷硼烷
生物累积
戒毒(替代医学)
金属硫蛋白
砷毒性
砷酸盐
谷胱甘肽
生物
生物化学
化学
环境化学
酶
基因
生态学
病理
有机化学
替代医学
医学
作者
Lizhu Chen,Huifeng Wu,Jianmin Zhao,Wei Zhang,Li Zhang,Shan Sun,Dinglong Yang,Buwen Cheng,Qing Wang
标识
DOI:10.1016/j.aquatox.2018.08.016
摘要
The major hazard of arsenic in living organisms is increasingly being recognized. Marine mollusks are apt to accumulate high levels of arsenic, but knowledge related to arsenic detoxification in marine mollusks is still less than sufficient. In this study, arsenic bioaccumulation as well as the role of glutathione S-transferase omega (GSTΩ) in the process of detoxification were investigated in the Ruditapes philippinarum clam after waterborne exposure to As(III) or As(V) for 30 days. The results showed that the gills accumulated significantly higher arsenic levels than the digestive glands. Arsenobetaine (AsB) and dimethylarsenate (DMA) accounted for most of the arsenic found, and monomethylarsonate (MMA) can be quickly metabolized. A subcellular distribution analysis showed that most arsenic was in biologically detoxified metal fractions (including metal-rich granules and metallothionein-like proteins), indicating their important roles in protecting cells from arsenic toxicity. The relative mRNA expressions of two genes encoding GSTΩ were up-regulated after arsenic exposure, and the transcriptional responses were more sensitive to As(III) than As(V). The recombinant GSTΩs exhibited high activities at optimal conditions, especially at 37 °C and pH 4–5, with an As(V) concentration of 60 mM. Furthermore, the genes encoding GSTΩ significantly enhance the arsenite tolerance but not the arsenate tolerance of E. coli AW3110 (DE3) (ΔarsRBC). It can be deduced from these results that GSTΩs play an important role in arsenic detoxification in R. philippinarum.
科研通智能强力驱动
Strongly Powered by AbleSci AI