修正案
沉积物
沸石
磷
薄膜中的扩散梯度
氮气
化学
铵
环境化学
化学工程
矿物学
地质学
法学
有机化学
催化作用
古生物学
工程类
政治学
作者
Yanhui Zhan,Yang Yu,Jun Lin,Xiaolong Wu,Yan Wang,Yuying Zhao
标识
DOI:10.1016/j.jenvman.2019.109369
摘要
The use of zeolite as a geo-engineering tool has a high potential to control nitrogen (N) release from sediments, but its efficiency for controlling sedimentary phosphorus (P) release still need to be further increased. To address this issue, this work synthesized an iron-modified zeolite (IM-Z) by coating iron onto the surface of natural zeolite (NAT-Z) and then the as-obtained IM-Z was utilized as a geo-engineering material to block the upward mobilization of N and P from sediments to the overlying water. The efficiencies of IM-Z covering and amendment to prevent the liberation of N and P from sediments were evaluated, and the controlling mechanism was explored. Capping and amendment with IM-Z not only resulted in the tremendous reduction of the levels of ammonium-N (NH4+-N) and reactive soluble P (RSP) in the overlying water, but also led to the decrease of the contents of NH4+-N and RSP in the pore water. More importantly, sediment capping and amendment with IM-Z resulted in the formation of a static layer in the upper sediment directly below the sediment-water interface, with very low concentration of RSP in the pore water. In addition, IM-Z capping and addition effectively immobilized the diffusive gradients in thin films (DGT)-labile P in the overlying water and sediment. Furthermore, the decrease of the DGT-labile Fe concentrations in the overlying water as well as the top sediment were also observed after IM-Z capping and addition. Nearly 70% of P bound by IM-Z is stable and difficult to be released back into the overlying water under common pH and anoxic conditions. The adsorption of pore water NH4+-N on IM-Z, the immobilization of pore water RSP and DGT-labile P by IM-Z and the uptake of DGT-labile Fe on IM-Z played a significant role in the simultaneous control of NH4+-N and RSP liberation. Compared to NAT-Z, the efficiency of IM-Z to block the liberation of sedimentary P was higher. Results of this study demonstrate that IM-Z is suitable for use in the simultaneous interception of the upward transportation of NH4+-N and RSP from sediments into the overlying water.
科研通智能强力驱动
Strongly Powered by AbleSci AI