SOS: Stereo Matching in O(1) with Slanted Support Windows

初始化 计算机科学 管道(软件) 人工智能 计算 计算机视觉 立体摄像机 平滑度 极线几何 钥匙(锁) 匹配(统计) 利用 立体视觉 算法 图像(数学) 数学 统计 数学分析 计算机安全 程序设计语言
作者
Vladimir Tankovich,Michael Schoenberg,Sean Fanello,Adarsh Kowdle,Christoph Rhemann,Maksym Dzitsiuk,Mirko Schmidt,Julien Valentin,Shahram Izadi
标识
DOI:10.1109/iros.2018.8593800
摘要

Depth cameras have accelerated research in many areas of computer vision. Most triangulation-based depth cameras, whether structured light systems like the Kinect or active (assisted) stereo systems, are based on the principle of stereo matching. Depth from stereo is an active research topic dating back 30 years. Despite recent advances, algorithms usually trade-off accuracy for speed. In particular, efficient methods rely on fronto-parallel assumptions to reduce the search space and keep computation low. We present SOS (Slanted O(1) Stereo), the first algorithm capable of leveraging slanted support windows without sacrificing speed or accuracy. We use an active stereo configuration, where an illuminator textures the scene. Under this setting, local methods - such as PatchMatch Stereo - obtain state of the art results by jointly estimating disparities and slant, but at a large computational cost. We observe that these methods typically exploit local smoothness to simplify their initialization strategies. Our key insight is that local smoothness can in fact be used to amortize the computation not only within initialization, but across the entire stereo pipeline. Building on these insights, we propose a novel hierarchical initialization that is able to efficiently perform search over disparity and slants. We then show how this structure can be leveraged to provide high quality depth maps. Extensive quantitative evaluations demonstrate that the proposed technique yields significantly more precise results than current state of the art, but at a fraction of the computational cost. Our prototype implementation runs at 4000 fps on modern GPU architectures.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助达芙采纳,获得10
2秒前
珊啊是珊珊啊完成签到 ,获得积分10
2秒前
March完成签到,获得积分10
7秒前
11秒前
木子发布了新的文献求助10
11秒前
NexusExplorer应助蕙心采纳,获得10
15秒前
达芙发布了新的文献求助10
15秒前
Kelsey完成签到 ,获得积分10
17秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
SPARK应助科研通管家采纳,获得10
19秒前
蓝天应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
SPARK应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
Ava应助达芙采纳,获得10
26秒前
licheng完成签到,获得积分10
31秒前
36秒前
37秒前
38秒前
求知若渴完成签到,获得积分10
40秒前
求知若渴发布了新的文献求助10
43秒前
Ddz完成签到,获得积分10
43秒前
Iamak24发布了新的文献求助10
43秒前
49秒前
Mic应助Lee采纳,获得10
50秒前
53秒前
anne完成签到 ,获得积分10
58秒前
xxxgggppp发布了新的文献求助10
59秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852267
求助须知:如何正确求助?哪些是违规求助? 6277521
关于积分的说明 15627853
捐赠科研通 4968135
什么是DOI,文献DOI怎么找? 2678923
邀请新用户注册赠送积分活动 1623178
关于科研通互助平台的介绍 1579554